
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Data Engineering and Analytics

Learning Temporal Consistency in Video
Generation

Felix Altenberger

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Data Engineering and Analytics

Learning Temporal Consistency in Video
Generation

Erlernen der Zeitlichen Konsistenz bei der
Videogenerierung

Author: Felix Altenberger
Supervisor: Prof. Dr. Matthias Nießner
Advisor: Prof. Dr. Matthias Nießner
Submission Date: 15.06.2020

I confirm that this master’s thesis in data engineering and analytics is my own work and I
have documented all sources and material used.

Munich, 15.06.2020 Felix Altenberger

Acknowledgments

I would like to thank the TUM Visual Computing Group for providing me with the
resources required to conduct my research. In particular, I want to thank Prof. Matthias
Nießner for both his supervision and his valuable insights, which had a strong influence on
the outcome of this work. Furthermore, I would like to thank the other students in the lab
that helped shape my research through valuable discussions and suggestions, specifically
Felix Meissen and Moritz Wolf.

Abstract

We propose a novel general-purpose loss for temporal consistency in generative adversarial
video generation. In our TimeCycle Loss, a GAN is trained jointly with a motion model,
which is a neural network that shifts frames according to the natural movement in the
specific domain. The motion model learns temporally-consistent shifting via a temporal
cycle-consistency constraint that requires it to reconstruct its input through a backward-
forward generation cycle. By applying the motion model to the generations of the GAN, we
constrain the GAN to produce temporally-consistent results. Unlike existing methods, our
loss has no task-specific model assumptions and can be easily applied to arbitrary GANs in
any domain. Based on our novel loss, we propose the TimeCycleGAN meta-architecture for
temporally-consistent video generation, where we additionally employ a recurrent generator
design and an unconditional sequence discriminator. We apply the meta-architecture to
two basic methods for paired and unpaired image-to-image translation and demonstrate
significant improvements in temporal consistency, by up to 63 percent. Our models can
generate photorealistic, temporally-consistent street-scene videos in both paired and unpaired
settings, and achieve quantitative video quality and temporal consistency scores comparable
to the respective task-specific state-of-the-art.

iv

Kurzfassung

In dieser Arbeit präsentieren wir einen neuen Ansatz zum Erlernen der zeitlichen Konsistenz
bei der Videogenerierung mit Generative Adversarial Networks. Hierfür verwenden wir eine
neue Lossfunktion, den TimeCycle Loss, bei dem wir ein zeitlich-konsistentes Bewegungs-
modell zusammen mit dem GAN trainieren. Das Bewegungsmodell ist ein neuronales Netz,
welches lernt, Bilder einer Sequenz gemäß der natürlichen Bewegung zu verschieben. Die
temporale Konsistenz des Bewegungsmodells wird durch eine zusätzliche Einschränkung
gewährleistet, welche fordert, dass das Bewegungsmodell das ursprüngliche Bild nach einem
zeitlichen Rückwärts-Vorwärts-Zyklus rekonstruieren kann. Dadurch, dass das GAN darauf
trainiert wird, nachfolgende Bilder einer Sequenz ähnlich wie das Bewegungsmodell zu
generieren, wird die temporale Konsistenz auch auf das GAN übertragen. Im Unterschied
zu existierenden Ansätzen stellt unsere Methode keinerlei Anforderungen an das zugrunde-
liegende Modell und kann einfach in beliebige GANs eingefügt werden. Basierend auf dem
TimeCycle Loss, präsentieren wir die TimeCycleGAN Metaarchitektur für temporal-konsistente
Videogenerierung mit GANs, bei welcher zusätzlich eine Modifikation im Generator des
GANs durchgeführt, und ein zusätzlicher sequentieller Diskriminator hinzugefügt wird. Wir
wenden unsere Metaarchitektur auf zwei einfache Modelle für gepaarte und ungepaarte
Bild-zu-Bild Übersetzung an und zeigen, dass sich dadurch temporal-konsistente Videos
generieren lassen. In quantitativen Vergleichen erzielen unsere Modelle ähnliche Ergebnisse
wie die besten Methoden im jeweiligen Bereich.

v

Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

1. Introduction 1

2. Related Work 3
2.1. Generative Adversarial Image Generation . 3

2.1.1. Generative Adversarial Networks . 3
2.1.2. DCGAN . 4
2.1.3. Pix2Pix . 4
2.1.4. Pix2PixHD . 5
2.1.5. CycleGAN . 6

2.2. Generative Adversarial Video Generation . 6
2.2.1. Vid2Vid . 6
2.2.2. RecycleGAN . 9
2.2.3. TecoGAN . 9

2.3. Temporal Cycle-Consistency Learning . 11
2.3.1. Temporal Cycle-Consistency in Feature Representation Learning 11
2.3.2. Temporal Cycle-Consistency for Video Alignment 12
2.3.3. Temporal Cycle-Consistency in GANs . 12

3. TimeCycleGAN 14
3.1. Sequential Generative Adversarial Networks . 14

3.1.1. Sequential Generators . 14
3.1.2. Sequence Discriminators . 15
3.1.3. Sequential Generative Adversarial Training 15

3.2. TimeCycle Loss . 18
3.2.1. TimeCycle Motion Model . 18
3.2.2. Temporal Cycle-Consistency Loss . 21
3.2.3. Prediction Similarity Loss . 22
3.2.4. Adversarial Motion Model Loss . 23
3.2.5. TimeCycle Loss and TimeCycleGAN Objective 23

3.3. TimeCycleGAN Models . 23
3.3.1. Overview of Video Generation Tasks . 26

vi

Contents

3.3.2. Unconditional TimeCycleGAN-U . 26
3.3.3. Unpaired TimeCycleGAN-UP . 28
3.3.4. Paired TimeCycleGAN-P . 29
3.3.5. Paired TimeCycleGAN-P++ . 29

4. Implementation 33
4.1. Implementation Details . 33

4.1.1. Network Architectures . 33
4.1.2. Hyperparameter Choices . 34
4.1.3. Temporally-Progressive Training . 34
4.1.4. Sequence-Wise Data Augmentation . 34

4.2. Applying TimeCycle Losses to Arbitrary GANs 35
4.2.1. TimeCycle Implementation . 35
4.2.2. Adding the TimeCycle Loss to an Existing GAN 36

5. Results and Evaluation 39
5.1. Datasets . 39

5.1.1. Cityscapes . 39
5.1.2. Carla . 40

5.2. Quantitative Evaluation Metrics . 40
5.2.1. Fréchet Inception Distance . 41
5.2.2. Learned Perceptual Image Patch Similarity 41
5.2.3. Temporal Distance on Learned Perception 42
5.2.4. Temporal Distance on Optical Flow . 42

5.3. Main Results . 42
5.3.1. Paired Video-to-Video Translation . 42
5.3.2. Unpaired Video-to-Video Translation . 45
5.3.3. Unconditional Video Generation . 50

5.4. Ablation Studies . 51
5.4.1. TimeCycleGAN Components . 51
5.4.2. TimeCycle Loss Types . 52
5.4.3. Sequence Discriminator Conditioning . 54
5.4.4. Sequence-Wise Data Augmentation . 55

6. Discussion 57
6.1. Summary . 57
6.2. Limitations . 58
6.3. Future Work . 58

A. Appendix 60
A.1. Network Design . 60

A.1.1. Recurrent Generator Design . 60
A.1.2. Motion Model Design . 61

vii

Contents

A.2. Comparison to Alternative Designs . 61
A.2.1. TimeCycle Loss and Ping-Pong Loss . 61
A.2.2. Other Types of Sequential Generators . 61

A.3. TimeCycle Extensions . 62
A.3.1. TimeCycle Warp Losses . 62
A.3.2. TimeCycle + Sequence Discriminator . 63
A.3.3. TimeCycle on Real Images . 63

List of Figures 64

List of Tables 65

Glossary 66

Acronyms 68

Bibliography 71

viii

1. Introduction

In machine learning, success often depends on the amount of training data available. However,
collecting sufficiently large datasets is often cumbersome, expensive, or even impossible. This
is, for instance, the case in traffic accident simulation, or applications dealing with rare
medical conditions. Video data, in particular, is often sparse, which inhibits research and
development progress in corresponding areas. By providing means to obtain sufficiently large
video datasets where only limited real data exists, artificial video generation methods could
enable and empower many applications.

In recent years, deep learning approaches have significantly advanced the state-of-the-art
in both image and video generation. The central innovation underlying this progress is the
generative adversarial network (GAN), where not only the generation process is learned, but
also an image quality measurement, which, unlike simple heuristics, guides the generation
process to create detailed, photorealistic results.

While image generation with GANs is a popular research topic, GAN-based video genera-
tion is a much less explored task, which is fundamentally difficult because it requires the joint
optimization of spatial consistency, temporal consistency, and image quality. Current video
generation approaches are highly task- and method-specific, which makes it challenging to
apply them to other GAN models in different settings.

We propose a novel approach for general-purpose GAN-based video generation with no
assumptions on the underlying GAN architecture. Based on the idea of temporal cycle-
consistency, we design a new loss function that enforces temporal consistency by jointly
training a small motion model with the GAN. We also propose a simple sequential GAN
design, which, when combined with the novel loss, forms a meta-architecture for temporal
consistency that can be easily applied to any GAN.

We demonstrate the meta-architecture by applying it to two basic per-frame image gen-
eration approaches to generate photorealistic, temporally-consistent street-scene videos in
paired and unpaired video-to-video translation settings, as shown in Figure 1.1. We further
compare the resulting video generation models to the task-specific state-of-the-art methods
of the respective domains and demonstrate comparable results. In summary, we combine
temporal cycle-consistency learning with a simple sequential GAN design to form the three
key contributions of our work:

• a novel general-purpose loss for temporally consistent video generation,

• a meta-architecture for GAN-based video generation that can be applied to any GAN,

• two simple, yet powerful models for paired and unpaired video-to-video translation.

1

1. Introduction

Figure 1.1.: Applying the TimeCycleGAN meta-architecture to two per-frame GAN methods
to make them temporally consistent. Top: paired video-to-video translation with pix2pix [1].
Bottom: unpaired video-to-video translation with CycleGAN [2]. The figure is best viewed with
Acrobat Reader. Click on an image to play the video clip.

2

2. Related Work

2.1. Generative Adversarial Image Generation

2.1.1. Generative Adversarial Networks

A Generative Adversarial Network (GAN) [3] consists of two main components: A Generator G,
which generates images x̃ from input noise z, and a Discriminator D, which should distinguish
the generated fake images x̃ from real images x. These two models are trained jointly in an
adversarial manner, where the generator’s task is to deceive the discriminator into judging the
generated images as real (D(G(z)) = 1), and the discriminator’s task is to correctly identify
real images as real (D(x) = 1) and generated images as fake (D(G(z)) = 0). Thereby, the
generator should learn to generate fake images that are indistinguishable from real images.

Objective Function The optimization scheme described above can be expressed as

G∗ = argmin
G
{max

D
{LGAN(G, D)}}, (2.1)

with the GAN loss

LGAN(G, D) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1− D(G(z)))], (2.2)

where pdata(x) is the distribution of real images approximated by our training dataset, and
pz(z) is the input noise distribution, which is typically chosen as the standard-normal
distribution N (0, 1). In the following, we will abbreviate Ex∼pdata(x) and Ez∼pz(z) as Ex and
Ez respectively.

Conditional GANs

It is also possible for GANs to learn conditional generations, simply by providing additional
input data y to both generator and discriminator [3], which changes the GAN objective in
Equation 2.1 to:

G∗ = argmin
G
{max

D
{LcGAN(G, D)}} (2.3)

with the conditional GAN loss

LcGAN(G, D) = Ex,y[log(D(x|y))] + Ez,y[log(1− D(G(z|y)|y))], (2.4)

where Ex,y = ExEy and Ez,y = EzEy with Ey = Ey∼pdata(y) for the distribution of conditioning
inputs pdata(y). To simplify the notation, we will abbreviate the conditional generation G(z|y)
as G(y) in the remainder and omit Ez accordingly.

3

2. Related Work

2.1.2. DCGAN

In [4], Radford et al. propose the Deep Convolutional GAN (DCGAN), which is used to learn
unsupervised feature representations through generative adversarial training.

DCGAN Architecture Guidelines The main contribution of DCGAN are its proposed
network architecture guidelines for stable GAN training, which are: replacing pooling layers
with strided convolutions as proposed in [5], removing all fully-connected layers, using batch
normalization [6] in both generator and discriminator, and using ReLU [7] and LeakyReLU [8,
9] activation functions in the generator and discriminator respectively. All of these guidelines
are still applied in most state-of-the-art GAN methods today [1, 2, 10, 11, 12, 13].

DCGAN Model Based on the proposed architecture guidelines, Radford et al. design a
novel fully-convolutional GAN model, which is an unconditional GAN, as introduced in
Section 2.1.1, that is used to generate images of size 64× 64.

2.1.3. Pix2Pix

One of the areas where GANs have been applied most successfully is Image-to-Image Translation,
which is a special case of conditional generation, where the conditioning input is another
image. In paired image-to-image translation, pix2pix [1] is a popular approach, which
proposes a simple, general architecture that can be applied to many domains.

U-Net Generator The generator of pix2pix is an encoder-decoder network [14], which uses
additional skip connections [15] between layers of equivalent size, leading to a design that is
closely related to the U-Net architecture [16].

PatchGAN Discriminator Pix2pix also introduces a new discriminator architecture called
PatchGAN, which is based on the semantic segmentation network in [17]. PatchGAN can be
interpreted as a sliding window approach that generates one output per image patch, where
all per-patch outputs are averaged in the end to obtain the final discriminator prediction.

L1 Loss Since the PatchGAN discriminator is only discriminating images patch-wise, it does
not use global image information. To make generations also globally consistent, pix2pix adds
an additional L1 loss term

LL1(G) = Ex,y[||x− G(y)||1]. (2.5)

Objective Function By combining the L1 loss with adversarial training, the objective func-
tion of pix2pix becomes

G∗ = argmin
G
{max

D
{LcGAN(G, D)}+ λL1LL1(G)}, (2.6)

where λL1 is a hyperparameter that defines the relative weight of the L1 loss.

4

2. Related Work

2.1.4. Pix2PixHD

pix2pixHD [10] extends the pix2pix implementation in order to enable the generation of more
realistic high-resolution images. To do so, multiple architecture adjustments were made.

Coarse-to-Fine Generator The generator in pix2pixHD consists of two parts: the global
generator, which generates lower-resolution images, and a local enhancer, which is built around
the global generator to increase the resolution. Both generators are based on the architecture
by Johnson et al. [18], which we also use in our proposed models, as we will discuss in
Section 4.1.1.

Multi-Scale Discrimination The discriminator in pix2pixHD is based on the PatchGAN
discriminator of pix2pix. However, pix2pixHD applies NDS − 1 additional discriminators to
downsampled versions of the image. In the following, we use Di to denote the discriminator
applied to images downsampled by a factor of 2i−1 for i ∈ {1, ..., NDS} with NDS scales.

Feature Matching and Perceptual Losses In addition to the GAN losses, pix2pixHD uses
feature matching losses [19]

LFM(G, D) = Ex,y[
L

∑
i=1

1
Ni
||D(i)(x|y)− D(i)(x̃|y)||1], (2.7)

as well as a perceptual loss [20] on five layers of a VGG19 [21] network

LP(G) = Ex,y[∑
i∈{2,7,12,21,30}

1
Ni
||VGG(i)(x)−VGG(i)(G(y))||1]. (2.8)

We also apply both losses in one of our paired TimeCycleGAN models, and we will discuss
them in more detail in Section 3.3.5.

Objective Function The total training objective of pix2pixHD is:

G∗ = argmin
G
{max

D
{

NDS

∑
k=1
LcGAN(G, Dk)}

+ λFM

NDS

∑
k=1
LFM(G, Dk)

+ λPLP(G)},

(2.9)

where D = (D1, ..., DNDS) is a multi-scale discriminator, LFM(G, D) and LP(G) are feature
matching and perceptual losses respectively, and λFM and λP are corresponding loss weights.

5

2. Related Work

2.1.5. CycleGAN

In [2], Zhu et al. propose CycleGAN, a technique for unpaired image-to-image translation,
where, in contrast to the paired setting, no information is available on how a given source
image should look like in the target domain. In Section 3.3, we will discuss the differences
between unconditional, unpaired, and paired generation in more detail. In order to learn the
mapping from the source domain Y to the target domain X in an unpaired setting, two GANs
(GX, DX) and (GY, DY) are trained jointly in CycleGAN, whereby each GAN should learn
a mapping from one domain to the other such that ỹ = GY(x) and x̃ = GX(y) are realistic
images of domains Y and X respectively.

Cycle-Consistency Loss To learn meaningful mappings between the domains, an additional
cycle-consistency loss is introduced:

LC(GX, GY) = Ex[||GX(GY(x))− x||1]
+ Ey[||GY(GX(y))− y||1]

(2.10)

Note that this cycle-consistency loss will play an important role later, because it is closely
related to our proposed TimeCycle loss in Section 3.2.

Identity Mapping Losses Additionally, two identity mapping losses

Lidt(GX) = Ex[||GX(x)− x||1]
Lidt(GY) = Ey[||GY(y)− y||1]

(2.11)

are used in some CycleGAN applications to further constrain the generators to prevent them
from performing unwanted color flipping.

Objective Function Using the cycle-consistency loss LC(GX, GY) and identity mapping
losses Lidt(GX) and Lidt(GY) with corresponding loss weights λC and λidt, the two GANs are
then trained jointly in CycleGAN with the following objective:

G∗X, G∗Y = argmin
GX ,GY

{max
DX
{LGAN(GX, DX)}+ max

DY
{LGAN(GY, DY)}

+ λCLC(GX, GY)

+ λidt(Lidt(GX) + Lidt(GY))}

(2.12)

2.2. Generative Adversarial Video Generation

2.2.1. Vid2Vid

Video-to-Video Translation refers to the task of generating videos from other videos and can
be seen as an extension of image-to-image translation to video data. vid2vid [11] is a paired
video-to-video translation technique that is based on pix2pixHD [10], and extends it in various
ways to generate temporally-consistent high-resolution videos.

6

2. Related Work

Recurrent Generator The first difference to pix2pixHD is that the generator G is trained to
generate sequences of length T and is additionally conditioned on the NG previous generations
and source images. Thus, for source images y and generations x̃, the generator is adjusted
from x̃t+1 = G(yt+1) to x̃t+1 = G(ct+1) with

ct+1 = (y(t−nG+1):(t+1), x̃(t−nG+1):t). (2.13)

Note that we will discuss such recurrent generators in more detail in Section 3.1.1.

Flow Prediction Network The core contribution of vid2vid is an optical flow prediction net-
work W, and a corresponding occlusion mask prediction network M, which are both trained
jointly with the generator G. These networks are used to optical-flow-warp a generation x̃t,
and to combine it with the subsequent generation x̃t+1 for improved temporal consistency. A
new fake image x̃t+1, given the conditioning ct+1, is then generated by

x̃t+1 = M(ct+1) ∗ G(ct+1) + (1−M(ct+1)) ∗warp(x̃t, W(ct+1)), (2.14)

where warp(x, w) is an optical-flow-warping operation that warps image x according to
optical flow w. In the following, we will use Ĝ to denote the three networks (G, W, M) that
are used to generate images.

Flow Loss The flow prediction network W is additionally trained in a supervised fashion
to mimic a ground truth flow w and to warp images according to the real movement of the
target images, using the following flow loss:

LF(W) = Ex1:T ,y1:T [
1

T − 1

T−1

∑
t=1
||wt −W(ct+1)||1 + ||warp(xt, W(ct+1))− xt+1||1], (2.15)

where x1:T and y1:T are target and source sequences of length T, wt is the ground truth flow
between xt and xt+1, and warp(x, w) is the optical-flow-warping operation. To obtain the
ground truth flow in domains where no ground truth flow is available, a FlowNet 2.0 [22]
model is inferenced on the real target sequences.

Warp Loss The combined generator Ĝ = (G, W, M) is also trained with a warp loss

LW(Ĝ) = Ex1:T ,y1:T [
1

T − 1

T−1

∑
t=1
||warp(x̃t, wt)− x̃t+1||1], (2.16)

where x̃t and x̃t+1 are fake images generated by Ĝ according to Equation 2.14. This loss
asserts that the optical flow between subsequent generations is similar to the optical flow
between the corresponding real images.

7

2. Related Work

Sequence Discriminator For improve temporal consistency further, another discriminator
DS is added. Similar to the per-frame discriminator, DS is also a multi-scale discriminator,
as defined in Section 2.1.4. However, instead of discriminating a single frame xt, DS is run
on a sequence xt:(t+ND−1) of ND subsequent frames. Furthermore, DS is also conditioned on
the ND − 1 ground truth optical flows wt:(t+ND−2) between subsequent frames. For a detailed
discussion on sequence discriminators refer to Section 3.1.2.

Temporal Multi-Scale Discrimination To learn long-term temporal consistency, vid2vid
also applies temporal multi-scale discrimination. The idea behind this approach is that, in-
stead of applying the sequence discriminator DS to a sequence of ND subsequent frames
xt:(t+ND−1) = (xt, xt+1, xt+2, ..., xt+ND−1), it is applied to general sequences of equally-spaced
frames (xt, xt+i, xt+2i, ..., xt+(ND−1)∗i). This can be interpreted as applying the sequence dis-
criminator to a modified version of the original sequence, which had its frame rate reduced
by a factor of i. By applying the sequence discriminator to NDT different temporal scales,
both short-term and long-term temporal consistency can be learned. Note that a separate
sequence discriminator DS,i is used for each temporal scale i.

Objective Function By combining all above contributions, we can express the total objective
function of vid2vid as

G∗, W∗, M∗ = argmin
G,W,M

{max
D,DS
{

NDS

∑
k=1
LcGAN(Ĝ, Dk) +

NDT

∑
i=1
LcGAN(Ĝ, DS;k,i)}

+ λFM(
NDS

∑
k=1
LFM(Ĝ, Dk) +

NDT

∑
i=1
LFM(Ĝ, DS;k,i))

+ λPLP(Ĝ)

+ λWLW(Ĝ)

+ λFLF(W)},

(2.17)

where Ĝ = (G, W, M) is the combined generator, D = (D1, ..., DNDS) is a spatial multi-scale
discriminator as defined in Section 2.1.4, DS = (DS;1,1, ..., DS;NDS,NDT) is a spatio-temporal
multi-scale discriminator with NDS spatial scales and NDT temporal scales, LFM and LP are
feature matching and perceptual losses as introduced in Section 2.1.4, and λFM, λP, λF, λW
are loss weights of the corresponding losses.

Other Contributions In addition to the contributions mentioned above, vid2vid also intro-
duces foreground-background priors for improved video quality, weight sharing between
networks for faster training, as well as a spatio-temporally progressive training approach. We
also use temporally progressive training in our models and will discuss it in more detail in
Section 4.1.3.

8

2. Related Work

2.2.2. RecycleGAN

RecycleGAN [12] is an approach for unpaired video-to-video translation. It is based on
CycleGAN [2], but, instead of the cycle-consistency loss from Equation 2.10, RecycleGAN
uses two novel losses, which improve temporal consistency and alleviate the perceptual mode
collapse problem.

Recycle Loss Instead of the spatial cycle-consistency loss of CycleGAN [2], a spatio-temporal
cycle-consistency loss is introduced, which is defined as

LRC(GX, GY, PX, PY) = Ex[
T−2

∑
t=1
||xt+1 − GX(PY(GY(xt−1, xt)))||1]

+ Ey[
T−2

∑
t=1
||yt+1 − GY(PX(GX(yt−1, yt)))||1],

(2.18)

where PX and PY are auxiliary networks that should predict the next frame of a sequence of
the corresponding domain, given the two previous frames.

Recurrent Loss During training, PX and PY are optimized jointly with GX and GY and are
additionally trained in a supervised fashion using the loss

LRCpred(PX, PY) = Ex[
T−2

∑
t=1
||xt+2 − PX(xt, xt+1)||1]

+ Ey[
T−2

∑
t=1
||yt+2 − PY(yt, yt+1)||1].

(2.19)

Objective Function The objective function to be optimized in RecycleGAN is then:

G∗X, G∗Y, P∗X, P∗Y = argmin
GX ,GY ,PX ,PY

{max
DX
{LGAN(GX, DX)}+ max

DY
{LGAN(GY, DY)}

+ λRCLRC(GX, GY, PX, PY)

+ λRCpredLRCpred(PX, PY)}

(2.20)

2.2.3. TecoGAN

Temporally Coherent GAN (TecoGAN) [13] is a concurrent work on temporal consistency
learning in GAN-based video generation, which proposes three major contributions: a
recurrent optical-flow generator design, a spatio-temporal triplet discriminator design, and a
novel loss for long-term temporal consistency.

9

2. Related Work

Recurrent Optical-Flow Generator TecoGAN proposes a novel recurrent optical-flow-based
generator, which, given previous generations x̃1:t, generates the subsequent frame as

x̃t+1 = G(st+1, warp(x̃t, F(st, st+1))), (2.21)

where warp(x, w) is the optical flow warping operation and F is a pretrained optical flow
estimation network. Thus, the generator generates novel frames based on the corresponding
source, as well as the previous generation, which was optical-flow-warped based on the
motion extracted from the corresponding source images.

Spatio-Temporal Triplet Discriminator The main contribution of TecoGAN is a novel
spatio-temporal discriminator design. This discriminator D always takes triplets (x1, x2, x3)

as input. For an intermediate frame xt in a real or generated sequence, this triplet is then
randomly chosen as either

(xt, xt, xt) (2.22)

or as
(xt−1, xt, xt+1) (2.23)

or as
(warp(xt−1, F(st−1, st)), xt, warp(xt+1, F(st+1, st))), (2.24)

i.e. the input is either the same frame three times, or three subsequent frames, or three subse-
quent ones where the first and last are optical-flow-warped to the middle. The probabilities
according to which triplets are selected are dynamically adjusted throughout the training
from (1, 0, 0) to (0.5, 0.25, 0.25) respectively.

Ping-Pong Loss In addition to the spatio-temporal discriminator, a Ping-Pong loss is intro-
duced for further long-term temporal consistency. Given a source sequence s1:T, the generator
is tasked to first generate the corresponding fake sequence x̃1:T, and then, starting with the
last generation x̃T, generate it backwards again to obtain a second generation sequence x̃′1:T−1.
The Ping-Pong loss is then defined as

LPP = Ex̃1:T ,x̃′1:T
[
T−1

∑
t=1
||x̃t − x̃′t||2], (2.25)

which is the sum of differences between the two generations for each frame, where Ex̃1:T ,x̃′1:T
denotes the expected value over the generated sequences. Note that this loss is closely related
to our proposed TimeCycle loss, and can even be seen as a special case of it, as we discuss in
Section A.2.1.

Other Losses In addition to GAN and Ping-Pong losses, TecoGAN also uses an L2 loss

LL2(G) = Ex,y[||x− G(y)||2] (2.26)

for paired generation, as well as perceptual losses LP(G), as introduced in Section 2.1.4, and
the vid2vid optical flow warp loss LW(G) from Section 2.2.1.

10

2. Related Work

Objective Functions Combining all losses, the objective of the paired TecoGAN model can
be expressed as

G∗ = argmin
G
{max

D
{LcGAN(G, D)}

+ λPPLPP(G)

+ λL2LL2(G)

+ λPLP(G)

+ λWLW(G)},

(2.27)

and the objective of the unpaired TecoGAN model as

G∗X, G∗Y = argmin
GX ,GY

{max
DX
{LGAN(GX, DX)}+ max

DY
{LGAN(GY, DY)}

+ λPP(LPP(GX) + LPP(GY))

+ λCLC(GX, GY)

+ λP(LP(GX) + LP(GY))},

(2.28)

where the perceptual loss in unpaired generation is defined as the average difference of gram
matrices between real and fake images, as proposed for the style transfer loss in [23].

2.3. Temporal Cycle-Consistency Learning

2.3.1. Temporal Cycle-Consistency in Feature Representation Learning

In [24], a novel approach for self-supervised tracking, semantic segmentation, and optical
flow prediction is proposed, which is based on feature representations that were learned with
a novel temporal cycle-consistency loss.

Temporal Cycle-Consistency Given a sequence of T images I1:T, a feature extraction net-
work φ is trained to extract corresponding feature representations xI

t = φ(It) for each image
It. For the temporal cycle-consistency learning, an auxiliary tracker model T : xI

s × xp
t 7→ xp

s is
then defined, which tracks a patch pt, represented by the corresponding feature representation
xp

t = φ(pt), first backwards in time with

x̂p
t−1 = T (xI

t−1, xp
t), (2.29)

and then forwards in time with
x̂p

t = T (xI
t , x̂p

t−1). (2.30)

If the reconstruction x̂p
t is close to the original representation xp

t , we call the reconstruction
Temporally Cycle-Consistent.

11

2. Related Work

Long Cycles For cycle-consistency over more than one frame, two types of temporal cycles
are proposed in [24]: The first temporal cycle type is a long, iterative cycle over consecutive
frames, where we first track backwards i-times in succession

x̂p
t−i,long = T (xI

t−i, ...T (xI
t−2, T (xI

t−1, xp
t))) (2.31)

and then forwards i-times in succession

x̂p
t−i+i,long = T (xI

t , T (xI
t−1, ...T (xI

t−i+1, x̂p
t−i,long))). (2.32)

Skip Cycles The second temporal cycle type is a direct cycle, where the tracker skips
through time by directly predicting the target frames, first backwards with

x̂p
t−i,skip = T (xI

t−i, xp
t), (2.33)

and then forwards with
x̂p

t−i+i,skip = T (xI
t , x̂p

t−i,skip). (2.34)

Temporal Cycle-Consistency Learning The feature extraction network φ and the tracker
T are trained jointly on the given image sequence I1:T by minimizing the distances of the
temporal cycle reconstructions of both long-range temporal cycle types. To do so, both types
are applied with various cycle lengths on a patch xp

T in the last frame IT of the sequence. This
can be expressed as the following objective function:

φ∗, T ∗ = argmin
φ,T

{Exp
1:T
[
NTC

∑
i=1
||xp

T − x̂p
T−i+i,long||+ ||x

p
T − x̂p

T−i+i,skip||]}, (2.35)

where NTC is a hyperparameter that specifies the longest temporal distance to track backwards.
This loss formulation is strongly related to our proposed TimeCycle loss, as we will discuss
in Section 3.2. Note that in [24] an additional feature similarity loss is applied, which was left
out for simplicity here, as it is not required for the concept of temporal cycle-consistency.

2.3.2. Temporal Cycle-Consistency for Video Alignment

In [25], a different approach for temporal cycle-consistency is proposed, which is used for
temporal video alignment. In this approach, two sequences S = (s1, ..., sN) and T = (t1, ..., tM)

are again encoded with a feature encoding network φ first, where the encoded sequences
U and V are obtained by ut = φ(st) and vt = φ(tt). Then, for a given ut, a temporal cycle
is performed by first finding the nearest neighbor ṽ of ut in V, then finding the neareast
neighbor of ṽ back in U, which is optimized to be close to ut.

2.3.3. Temporal Cycle-Consistency in GANs

To our knowledge, there is no current method that directly applies temporal cycle-consistency
learning to GAN-based video generation. However, several state-of-the-art video generation
methods share similarities with it.

12

2. Related Work

TecoGAN The most closely related method is the Ping-Pong loss of TecoGAN, described in
Section 2.2.3. As we will discuss in Section A.2.1, the Ping-Pong loss can even be seen as a
special case of our proposed TimeCycle loss.

RecycleGAN The spatio-temporal cycle-consistency loss of RecycleGAN, as introduced in
Equation 2.19, is also somewhat related to temporal cycle-consistency, where the next-frame-
prediction with the auxiliary predictor models could be interpreted as half of a length-1
temporal cycle.

13

3. TimeCycleGAN

3.1. Sequential Generative Adversarial Networks

Let us assume we have an arbitrary GAN model consisting of a per-frame generator G and a
per-frame discriminator D that are trained in an adversarial manner to optimize the standard
GAN objective defined in Equation 2.1. We visualize such a GAN in Figure 3.1, where we use
convolutional architectures to illustrate both G and D.

Real
Fake

Fake Image

TrainingData Real Image
Discriminator D

Generator GRandomNoise
Figure 3.1.: A standard GAN model consisting of a per-frame generator G and a per-frame
discriminator D. Both networks are depicted as convolutional networks for illustration
purposes.

3.1.1. Sequential Generators

We argue that, in order to learn temporal consistency, there needs to be a correlation between
generated frames in the generation process. Similar to vid2vid [11] and TecoGAN [13], we
propose to establish this correlation by means of a recurrent generator design that generates

14

3. TimeCycleGAN

subsequent frames x̃t+1 based on the NG previous generations x̃(t−NG+1):t with

x̃t+1 = G(ct+1, x̃(t−NG+1):t), (3.1)

where ct+1 is an optional conditioning input, such as the corresponding source image in paired
image-to-image translation. When generating the first generations x1:NG+1 of each sequence,
we feed random noise into the generator in place of the missing previous generations. Thus,
x1 and xt+1 with t ∈ {1, ..., NG − 1} are generated from a sequence of noise images z1:NG by

x̃1 = G(ct+1, z1:NG), (3.2)

and
x̃t+1 = G(ct+1, z(t+1):NG

, x̃1:t), (3.3)

where ct+1 is again an optional conditioning input. The random noise images z1:NG are
sampled independently from a standard-normal distribution N (0, 1). In Figure 3.2 we
visualize this recurrent generator design for NG = 1 and compare it to the per-frame generator
of the GAN model depicted in Figure 3.1. For a detailed discussion on the specific generator
design choices refer to Section A.1.1.

3.1.2. Sequence Discriminators

To learn temporal consistency in an adversarial setting, we use an additional sequence
discriminator DS that discriminates sequences xt:(t+ND−1) of ND frames at a time. For two
given sequences x1:T and x̃1:T of real and fake frames respectively, the sequence discriminator
is then applied to all sub-sequences of length ND to produce T−ND + 1 discriminator outputs

dreal
1:(T−ND+1) = (DS(x1, ..., xND), ..., DS(xT−ND+1..., xT)) (3.4)

and
d f ake

1:(T−ND+1) = (DS(x̃1, ..., x̃ND), ..., DS(x̃T−ND+1..., x̃T)) (3.5)

for real and fake sequences respectively. For the case ND = T, the sequence discriminator DS
is then only applied once per sequence, as opposed to the per-frame discriminator D that
is applied T times. We compare and visualize both D and DS for sequential generation in
Figure 3.3.

3.1.3. Sequential Generative Adversarial Training

By training the sequential generator G from Section 3.1.1 with an unconditional sequence
discriminator DS from Section 3.1.2, we obtain the sequential generative adversarial objective

G∗ = argmin
G
{max

DS
{LsGAN(G, DS)}} (3.6)

15

3. TimeCycleGAN

RandomNoise Fake Image 1

Fake Image 1RandomNoise Fake Image 2Fake Image 2

Fake Image 2RandomNoise Fake Image 3Fake Image 3

Fake Image T-1RandomNoise Fake Image TFake Image T

RandomNoise Fake Image 1

Per-Frame Generator Recurrent Generator
Figure 3.2.: Comparison of our proposed recurrent generator design to a corresponding
per-frame generator. The per-frame generator generates each frame independently. The
recurrent generator reuses previous generations.

16

3. TimeCycleGAN

DS RealFake

RealSequence

FakeImage 2
FakeImage 3

FakeImage 1

FakeImage T

FakeSequence

RealImage
FakeImage 2

FakeImage 1

RealImage
FakeImage T

RealImage D RealFake

D RealFake

D

Per-Frame Discriminator Sequence Discriminator

RealFake

Figure 3.3.: Comparison of our proposed sequence discriminator with ND = T to a corre-
sponding per-frame discriminator in a sequential GAN. The per-frame discriminator discrimi-
nates each frame independently. The sequence discriminator discriminates entire sequences
at once.

17

3. TimeCycleGAN

where LsGAN is the sequential GAN loss

LsGAN(G, DS) = Ex1:T [
1

T − ND + 1

T−ND+1

∑
t=1

log(DS(xt:(t+ND−1)))]

+ Ez1:NG
[

1
T − ND + 1

T−ND+1

∑
t=1

log(1− DS(G(z1:NG)t:(t+ND−1)))],

(3.7)

where x1:T is a sequence of T real images, z1:NG is a sequence of NG standard-normal
distributed random noise images, and G(z1:NG) is a sequence of T fake images generated
from z1:NG according to Equations 3.1, 3.2, 3.3. We visualize this sequential training in Figure
3.4.

Combined Objective We can further combine the sequential GAN objective from Equation
3.7 with the initial per-frame objective given in Equation 2.1, leading to the following combined
objective:

G∗ = argmin
G
{max

D
{LGAN(G, D)}+ max

DS
{LsGAN(G, DS)}} (3.8)

This sequential GAN design with recurrent generator, per-frame discriminator, and sequence
discriminator is the basis of our TimeCycleGAN meta-architecture. We visualize the sequential
GAN in Figure 3.5.

3.2. TimeCycle Loss

To further improve the temporal consistency of consecutive generations, we propose the
TimeCycle loss. The idea behind this loss is to train a GAN jointly with a motion model,
enforce temporal consistency of the motion model via a temporal cycle-consistency loss, and
then pass the temporal consistency to the GAN.

3.2.1. TimeCycle Motion Model

The motion model M is a separate neural network that is applied to shift frames of the
sequence generated by the GAN. Given a generated frame x̃t of a generated sequence x̃1:T,
we can apply the motion model M to shift the frame forwards or backwards in time with

x̃ f
t+1 = M(x̃t|c f

t) (3.9)

and with
x̃b

t−1 = M(x̃t|cb
t) (3.10)

respectively, where c f
t and cb

t are additional conditioning inputs that describe the motion
according to which the frame x̃t should be shifted forwards or backwards. Following [24], we
designed the motion model to be much smaller than the generator and just complex enough
to perform image warping. This is discussed in more detail in Sections 4.1.1 and A.1.2. While
we can find a general-purpose definition of the conditioning inputs, we can also make use of
task-specific information to depict the motion more accurately.

18

3. TimeCycleGAN

RealSequence

DS RealFake

RealSequence

FakeSequence

RealSequence

Fake Image 1 Fake Image 2

Fake Image T-1 Fake Image T

RandomNoise Fake Image 1

RealSequenceTraining
 Data

Figure 3.4.: Visualization of the sequential GAN training with a recurrent generator G and a
sequence discriminator DS that are trained jointly on a set of real training sequences.

19

3. TimeCycleGAN

RealSequence

DS RealFake

RealSequence

FakeSequence

RealSequence

Fake Image 1 Fake Image 2

Fake Image T-1 Fake Image T

RandomNoise Fake Image 1

RealSequenceTraining
 Data

RealImage

RealImage

RealImage

D RealFake

D RealFake

D RealFake

Figure 3.5.: Visualization of the proposed sequential GAN design consisting of a recurrent
generator G, a per-frame discriminator D, and a sequence discriminator DS.

20

3. TimeCycleGAN

General Motion Model For a general motion model definition, which can be applied to
arbitrary tasks, we can define the conditioning inputs as the NM previous generations in the
respective motion direction:

c f
t = x̃(t−NM):(t−1) (3.11)

and
cb

t = x̃(t+1):(t+NM). (3.12)

Thus, we use the sequence of NM + 1 previous generations x̃(t−NM):t to generate the next

frame x̃ f
t+1 according to the motion present in the sequence. Similarly, we generate x̃b

t−1 from
x̃(t:(t+NM).

Conditional Motion Model For certain tasks, we can adjust the conditioning input based on
additional given information. In a conditional generation setting, such as paired or unpaired
video-to-video translation, we can obtain the desired target location of the shift from the
conditioning input of the GAN. Given a sequence of generations x̃1:T with corresponding
conditioning y1:T, we can then simply define the motion model conditioning inputs as

c f
t = yt+1 (3.13)

and
cb

t = yt−1 (3.14)

Thus, we shift x̃t to the location yt+1 for x̃ f
t+1 and to the location yt−1 for x̃b

t−1.

Long-Range Shifts Instead of shifting a generation only for one time step at once, we can
also define long-range shifts over k temporal steps as

x̃k f
t+k = M(x̃t|c f

t , c f
t+1, ..., c f

t+k−1) (3.15)

and
x̃kb

t−k = M(x̃t|cb
t , cb

t−1, ..., cb
t−k+1). (3.16)

3.2.2. Temporal Cycle-Consistency Loss

In order to make the generations of the motion model temporally consistent, we define
a temporal cycle-consistency loss that requires the motion model to reconstruct its input
through a backward-forward cycle. Given the motion model M and a generation x̃t, we define
Temporal Cycle-Consistency as the similarity of the reconstruction x̃b f

t to the input x̃t, where x̃b f
t

is the result of the backward-forward cycle

x̃b
t−1 = M(x̃t|cb

t)

x̃b f
t = M(x̃b

t−1|c
f
t−1)).

(3.17)

Note that this idea is heavily inspired by the temporal tracking cycle of [24] as defined in
Equations 2.29 and 2.30. Similar to [24], we also apply the same two types of long-range
temporal cycles, as explained in the following.

21

3. TimeCycleGAN

Long Cycles As a reminder, in the long tracking cycle in [24] the tracker tracks an image
patch repeatedly backwards for i-times and then forwards again for i time steps to obtain a
reconstruction which is compared to the original image patch. Similarly, we define a long
temporal cycle on our motion model by first successively shifting a generation x̃t backwards
i-times with

x̃long
t−i = M(...M(M(x̃t|cb

t)|cb
t−1)...|cb

t−i+1), (3.18)

and then forwards i-times with

x̃long
t−i+i = M(...M(M(x̃long

t−i |c
f
t−i)|c

f
t−i+1)...|c

f
t−1). (3.19)

Skip Cycles In the second type of tracking cycle in [24], the image patch is tracked to the
target locations directly by performing a single large tracking step backwards and another
single large step forwards to obtain the reconstruction. We can do this with our motion
models by shifting a generation x̃t backwards in time for i steps at once, as defined in Equation
3.15, with

x̃skip
t−i = M(x̃t|cb

t , cb
t−1, ..., cb

t−i+1), (3.20)

and then forwards in time i steps at once, as defined in Equation 3.16, with

x̃skip
t−i+i = M(x̃skip

t−i |c
f
t , c f

t+1, ..., c f
t+i−1). (3.21)

Loss Function Similar to [24], we calculate the temporal cycle-consistency loss LTCrec by
applying the two types of long-range cycles to the last frame x̃T of each generated sequence
x̃1:T. Using NTC to denote the longest temporal distance, we can then define the temporal
cycle-consistency loss

LTCrec(G, M) = Ex̃1:T [
1

NTC

NTC

∑
i=1
||x̃T − x̃long

T−i+i||1 + ||x̃T − x̃skip
T−i+i||1], (3.22)

where Ex̃1:T denotes the expected value over generated sequences. Note again the similarity
to the objective of [24] defined in Equation 2.35.

3.2.3. Prediction Similarity Loss

Through the temporal cycle-consistency loss, the motion model learns to generate temporally
consistent outputs. In order to pass the temporal consistency to the GAN generator, we
add another loss that compares the intermediate predictions of the motion model to the
corresponding generator generations. Let us again use x̃1:T to denote a sequence of T
generator generations on which we calculated the temporal cycle-consistency loss as defined in
Equation 3.22, during which we computed intermediate predictions x̃long

T−i and x̃skip
T−i according

to Equations 3.18 and 3.20 for all i ∈ {1, NTC}. Because the motion model is temporally
consistent, all x̃long

T−i and x̃skip
T−i are temporally consistent with x̃T, so we can use the loss

LTCpred(G, M) = Ex̃1:T [
1

NTC

NTC

∑
i=1
||x̃T−i − x̃long

T−i ||1 + ||x̃T−i − x̃skip
T−i||1] (3.23)

22

3. TimeCycleGAN

to further constrain the generations x̃(T−NTC):(T−1) to be temporally consistent with x̃T.

3.2.4. Adversarial Motion Model Loss

Note that we use the L1 distance for both the temporal cycle-consistency loss in Equation 3.22
and the prediction similarity loss in Equation 3.23. As a result, the outputs of the motion
model might become blurry, which might then also compromise the image quality of the
generations. To prevent this, we also apply the per-frame discriminator D of the GAN to all
intermediate predictions x̃long

T−i and x̃skip
T−i and reconstructions x̃long

T−i+i and x̃skip
T−i+i to ensure they

are realistic. Thereby, we obtain an additional adversarial loss term

LGANTC(G, M, D) =
1
4

Ex[
1

NTC

NTC

∑
i=1

log(D(x̃long
T−i))] +

1
4

Ex[
1

NTC

NTC

∑
i=1

log(D(x̃skip
T−i))]

+
1
4

Ex[
1

NTC

NTC

∑
i=1

log(D(x̃long
T−i+i))] +

1
4

Ex[
1

NTC

NTC

∑
i=1

log(D(x̃skip
T−i+i))]

+ Ez[log(1− D(G(z)))].

(3.24)

3.2.5. TimeCycle Loss and TimeCycleGAN Objective

Let us combine both the temporal cycle-consistency loss LTCrec from Equation 3.22 and the
prediction similarity loss LTCpred from Equation 3.23 to the TimeCycle Loss

LTC(G, M) = LTCrec(G, M) + LTCpred(G, M), (3.25)

By adding both the TimeCycle loss, weighted by a factor of λTC, and the adversarial motion
model loss from Equation 3.24 to the proposed sequential GAN objective defined in Equation
3.8, we then obtain the TimeCycleGAN objective

G∗, M∗ = argmin
G,M

{max
D
{LGAN(G, D) + LGANTC(G, M, D)}

+ max
DS
{LsGAN(G, DS)}

+ λTCLTC(G, M)},

(3.26)

which will be the basis of all TimeCycleGAN models proposed in the following section. In
Figure 3.6 we show a simple flow diagram of the TimeCycleGAN meta-architecture with the
TimeCycle loss, and a detailed visualization can be seen in Figure 3.7.

3.3. TimeCycleGAN Models

Using the TimeCycleGAN approach, we design novel models for three different tasks: paired
video-to-video translation, unpaired video-to-video translation, and unconditional video
generation.

23

3. TimeCycleGAN

Generator
RandomNoise

FakeSequence
Per-FrameDiscriminator SequenceDiscriminatorMotion Model

Per-FrameGAN Loss SequentialGAN Loss

ReconstructionSequence

TemporalCycle Loss

Motion Model
L1 Distance
PredictionSimilarity Loss

L1 DistancePer-FrameDiscriminator
Motion ModelGAN Losses

PredictionSequence
TimeCycle Loss

Figure 3.6.: A flow diagram of the TimeCycleGAN meta-architecture. The generator generates
a fake sequence on which the TimeCycle loss and per-frame and sequential GAN losses are
computed. Discriminator updates on real images are omitted for simplicity.

24

3. TimeCycleGAN

G G G G GFakeImage 1 FakeImage 2 FakeImage 3 FakeImage 4 FakeImage T

M M MPred. 1 Pred. 2 Pred. 3 Pred. 4 DDDD

DDDD D

Rec. 4 D
Rec. 3 D
Rec. 2 D
Rec. 1 DG: Recurrent GeneratorD: Per-Frame DiscriminatorDS: Sequence DiscriminatorM: Motion ModelL1: L1 LossSeq.: SequenceRec.: Cycle-ReconstructionPred.: Intermediate Prediction

M
M
M
M
M

MMM
M M

M

L1L1 L1 L1

FakeImage 3FakeSeq. DS

L1

Figure 3.7.: A visualization of the TimeCycleGAN meta-architecture with long temporal cycle.
The generator generates a fake sequence on which the TimeCycle loss and per-frame and
sequential GAN losses are computed. Discriminator updates on real images and TimeCycle
skip cycles are omitted for simplicity.

25

3. TimeCycleGAN

3.3.1. Overview of Video Generation Tasks

Unconditional Video Generation

In unconditional video generation, we are given several real target sequences, and the task is
to learn the generation of similar sequences, without any further restrictions.

Paired Video-to-Video Translation

In paired video-to-video translation, we are additionally given a source image, such as a
semantic segmentation map, for each target image. The generator is then conditioned on a
sequence of source images, and, in addition to generating realistic videos, each frame of the
generated video should also match the corresponding source image.

Unpaired Video-to-Video Translation

In unpaired video-to-video translation, we want to generate videos according to a given input
source sequence, similar to paired video-to-video translation. However, instead of having
sequences of source-target pairs (yt, xt)t∈1:T during training, we only have two separate,
unrelated sequences x1:T and y1:T of target and source images respectively, and we have no
explicit information how a given target or source image should look like in the respective
other domain. To perform this task, we typically train two generation methods for both
translation directions jointly.

Comparison

In Figure 3.8 we show a comparison of the training data and learning objectives of the three
video generation tasks. Note that, in terms of difficulty, having fewer additional inputs for
a task makes it more difficult to generate realistic videos because there is less information
available that can be used to estimate the correct motion of a generated sequence.

3.3.2. Unconditional TimeCycleGAN-U

For unconditional video generation, we apply the TimeCycleGAN meta-architecture to
DCGAN, which we covered in Section 2.1.2. The resulting TimeCycleGAN-U (TCGAN-U)
model is then trained with the default TimeCycleGAN objective

G∗, M∗ = argmin
G,M

{max
D
{LGAN(G, D) + LGANTC(G, M, D)}

+ max
DS
{LsGAN(G, SV)}

+ λTCLTC(G, M)}.

(3.26 revisited)

In order to adjust the DCGAN generator to be recurrent according to Section 3.1.1, we add
an image encoder network E before the generator, which encodes a given sequence of NG
previous generations x̃(t−NG):(t−1) into a latent representation z̃t that has similar size as the

26

3. TimeCycleGAN

X 2

X 1

X N

X1Y1

Y 1X 1

XMYM

Y NX N

X 1Y 1

X 2Y 2

X NY N

Y 1X 1

Y 2X 2

Y NX N

Y1X 1

Y2X 2

YMX N

X 1

X 2

X N

Paired UnpairedUnconditional
Training

 Data
Learnin

g Objec
tive

&

Figure 3.8.: Comparison of unconditional video generation (left), paired video-to-video
translation (middle) and unpaired video-to-video translation (right). The top row shows
the training data for each task: A set of sequences, a set of sequence pairs, and two sets of
sequences from different domains. The bottom row shows the learning objective: Generating
sequences from random noise and generating sequences from other sequences in one and
two directions, respectively.

27

3. TimeCycleGAN

random noise input zt that the standard image-wise DCGAN generator would usually be
conditioned on. To obtain this image encoder, we simply transpose the generator architecture.

3.3.3. Unpaired TimeCycleGAN-UP

We use CycleGAN [2] from Section 2.1.5 as the basis of our unpaired TimeCycleGAN-UP
(TCGAN-UP) model. As a reminder, CycleGAN consists of two GANs, (GX, DX) and
(GY, DY), that are trained jointly with

G∗X, G∗Y = argmin
GX ,GY

{max
DX
{LGAN(GX, DX)}+ max

DY
{LGAN(GY, DY)}

+ λCLC(GX, GY)

+ λidt(Lidt(GX) + Lidt(GY))}

(2.12 revisited)

where LC(GX, GY) is the cycle-consistency loss

LC(GX, GY) = Ex[||GX(GY(x))− x||1]
+ Ey[||GY(GX(y))− y||1].

(2.10 revisited)

and Lidt(GX) and Lidt(GY) are the identity mapping losses

Lidt(GX) = Ex[||GX(x)− x||1]
Lidt(GY) = Ey[||GY(y)− y||1].

(2.11 revisited)

Objective Function After we apply the TimeCycleGAN meta-architecture from Equation
3.26 to both GANs (GX, DX) and (GY, DY), we obtain TimeCycleGAN-UP with objective

G∗X, G∗Y, M∗X, M∗Y = argmin
GX ,GY

{max
DX
{LGAN(GX, DX) + LGANTC(GX, MX, DX)}

+ max
DY
{LGAN(GY, DY) + LGANTC(GY, MY, DY)}

+ max
DS,X
{LsGAN(GX, DS,X)}

+ max
DS,Y
{LsGAN(GY, DS,Y)}

+ λTC(LTC(GX, MX) + LTC(GY, MY))

+ λCLC(GX, GY)

+ λidt(Lidt(GX) + Lidt(GY))}

(3.27)

Note that we use separate motion models MX and MY for the two domains, which are both
conditional motion models, as defined in Section 3.2.1, conditioned on the sequence of the
respective other domain. To make the generator recurrent, we simply increase its input
dimension.

28

3. TimeCycleGAN

3.3.4. Paired TimeCycleGAN-P

For the task of paired video-to-video translation, we build upon the paired image-to-image
translation method pix2pix, which we covered in Section 2.1.3. As a reminder, pix2pix is a
conditional GAN with the objective

G∗ = argmin
G
{max

D
{LcGAN(G, D)}+ λL1LL1(G)}, (2.6 revisited)

where LL1 is the L1 loss
LL1(G) = Ex,y[||x− G(y)||1] (2.5 revisited)

and LcGAN(G, D is the conditional GAN loss

LcGAN(G, D) = Ex,y[log(D(x|y))] + Ez,y[log(1− D(G(z|y)|y))]. (2.4 revisited)

Objective Function We then apply the TimeCycleGAN approach in Equation 3.26 to pix2pix,
resulting in the video-to-video translation model TimeCycleGAN-P (TCGAN-P) with the
objective

G∗, M∗ = argmin
G,M

{max
D
{LcGAN(G, D) + LcGANTC(G, M, D)}

+ max
DS
{LsGAN(G, DS)}}

+ λTCLTC(G, M)

+ λL1LL1(G)}.

(3.28)

Note that we also use the conditional GAN loss for the adversarial motion model loss here.
Furthermore, we use a conditional motion model, as defined in Section 3.2.1, with source
images as conditioning. Again, we simply increase the input dimension of the generator to
make it recurrent.

3.3.5. Paired TimeCycleGAN-P++

Based on TimeCycleGAN-P, we also build another paired video-to-video translation model,
TimeCycleGAN-P++ (TCGAN-P++), where we additionally apply feature matching [19] and
perceptual losses [20] to make the training more stable and to further improve the image quality.

Feature Matching Loss

In the feature matching technique [19], the adversarial loss of the generator is modified such
that the generated outputs should additionally match the statistics of the real data within the
discriminator. This makes the training more stable because the generated images should now
also lead to similar internal representations in the discriminator instead of only requiring a
particular discriminator output.

29

3. TimeCycleGAN

Feature Matching Loss Function By computing the norm on the differences between corre-
sponding feature activations in each layer of the discriminator, a feature matching loss on a
conditional per-frame discriminator D can then be computed as

LFM(G, D) = Ex,y[
L

∑
i=1

1
Ni
||D(i)(x|y)− D(i)(x̃|y)||1], (2.7 revisited)

where y denotes the conditioning image, x the real image, x̃ the generated image, L the
number of layers of D, D(i) the feature activations of the i-th layer of D, and Ni the number
of neurons in the i-th layer. Note that, similar to pix2pixHD [10], we use the L1-norm because
it is more robust to outliers than the L2-norm used in [19].

Feature Matching in Sequence Discriminators We calculate a feature matching loss for
both the per-frame discriminator, as well as the sequence discriminator. Using similar notation,
the feature matching loss of the unconditional sequence discriminator can be defined as

LFM(G, DS) = Ex[
L

∑
i=1

1
Ni
||D(i)

S (xt:(t+ND−1))− D(i)
S (x̃t:(t+ND−1))||1], (3.29)

where xt:(t+ND−1) and x̃t:(t+ND−1) are real and fake sequences of length ND.

Perceptual Loss

For the perceptual loss [20], a convolutional neural network for visual perception is applied
to both the ground truth and the corresponding generated image in paired image-to-image
translation, and the loss is calculated as the difference of feature activations in some of the
convolutional layers of the perception network. Similar to pix2pixHD [10], we use the VGG19
network [21] and compute the difference of feature activations in five of its layers, leading to
the same perceptual loss

LP(G) = Ex,y[∑
i∈{2,7,12,21,30}

1
Ni
||VGG(i)(x)−VGG(i)(G(y))||1], (2.8 revisited)

where VGG(i) are the feature activations of the i-th layer of the VGG19 network, and Ni is the
number of neurons in the corresponding layer.

Perceptual Loss and Feature Matching Note that the perceptual loss is closely related to
feature matching. In both losses, we compare the feature activations within a neural network
between a generated image and the corresponding real image. The difference is that the
feature matching loss uses the discriminator, and the perceptual loss an external pretrained
perceptual network.

30

3. TimeCycleGAN

Perceptual Loss and L1 Loss While the loss formulation of the perceptual loss in Equation
2.8 seems very different from the pix2pix L1 loss defined in Equation 2.5, both losses are, in
fact, also closely related. In practice, both losses are helpful to stabilize the early adversarial
training by providing an external image quality measurement that guides the optimization
in the right direction, and both losses can also be used to improve global spatial image
consistency. The perceptual loss that we defined in Equation 2.8 can even be seen as another
form of the L1 loss, where the loss is calculated on the feature activations of some perceptual
network instead of on the image itself, as shown in Figure 3.9, where we compare L1,
perceptual, and feature matching losses.

Fake Image

Real Image
Discriminator D

Fake Image

Real Image
L1

Discriminator D

L1 L1 L1

Fake Image

Real Image
Perceptual Network

Perceptual Network

L1 L1 L1

L1 Loss Feature Matching Loss Perceptual Loss
Figure 3.9.: Comparison of L1 loss (left), feature matching loss (middle) and perceptual loss
(right). The L1 loss compares real to fake images directly. Feature matching and perceptual
losses compare the feature activations of layers in the discriminator or a pretrained perceptual
network, respectively.

Objective Function

By adding feature matching losses LFM(G, D) and LFM(G, DS) of Equations 2.7 and 3.29, and
a perceptual loss LP(G) on VGG19 as defined in Equation 2.8, the TimeCycleGAN-P objective

31

3. TimeCycleGAN

of Equation 3.28 is adjusted to the TimeCycleGAN-P++ objective

G∗, M∗ = argmin
G,M

{max
D
{LcGAN(G, D) + LcGANTC(G, M, D)}

+ max
DS
{LsGAN(G, DS)}}

+ λFM(LFM(G, D) + LFM(G, DS))

+ λTCLTC(G, M)

+ λL1LL1(G)

+ λPLP(G)}.

(3.30)

32

4. Implementation

4.1. Implementation Details

4.1.1. Network Architectures

Generators and Per-Frame Discriminators

Similar to CycleGAN [2] and RecycleGAN [12], we use a residual generator based on the
architecture proposed by Johnson et al. [18] for all generators, and the pix2pix [1] patchGAN
discriminators for all paired and unpaired video-to-video translation models. For 256× 256
generation, we use six residual blocks in the generator and three layers in the discriminator.
For 64× 64 generation, we use three residual blocks in the generator and two layers in the
discriminator and additionally divide all filter sizes by a factor of two. As described in
Section 3.1.1, we condition the generators on previous generations, which we implement by
increasing the input channel dimension of the networks accordingly. For the unconditional
models, we use the standard DCGAN [4] networks, and we transpose the generator to obtain
an image encoder for previous generations.

Sequence Discriminators

We also use the discriminator architecture described above for all sequence discriminators.
However, our unconditional sequence discriminators are applied to sequences of ND frames,
so the input channel dimension is adjusted accordingly from CG + CC to ND ∗ CG, where
CG is the number of channels of generated images and CC is the number of channels of
conditioning images.

TimeCycle Motion Models

For the TimeCycle motion models, we use the same architecture as for all other generators,
but we significantly reduce the number of layers of the network. In particular, we choose
the number of residual blocks such that the receptive field of one generated pixel in the
output image is roughly equal to one-fifth of the image size in each spatial dimension, e.g.,
for resolution 256× 256 we use two residual blocks for a 45× 45 receptive field, and for
resolution 64× 64 we use no residual blocks for a receptive field size of 13× 13. The reduction
of layers also leads to a reduction in network parameters to around ten percent. Note that
the receptive field reduction factor of 1

5 was specifically selected for the Cityscapes domain
because the pixel-wise motions between frames do not exceed one-fifth of the image size. For

33

4. Implementation

domains with more extreme motions, a larger receptive field might be necessary because the
motion model will otherwise not be able to reuse the relevant area of the previous generation.

4.1.2. Hyperparameter Choices

To train our models, we use the least-squares GAN objective [26], and two separate Adam
optimizers [27] with coefficients β1 = 0.5, β2 = 0.999 for both generator and discriminator.
All other hyperparameters for training on 64× 64 images are listed in Table 4.1. For training
on 256× 256 images, we use batch size BS = 1 and, where necessary, lower T, ND and NTS to
fit on a single GPU.

Hparam Description TCGAN-
P

TCGAN-
P++

TCGAN-
UP

TCGAN-
U

T Sequence Length 5 5 5 5
NG Number of Inputs of G 1 1 1 1
ND Number of Inputs of DS 5 5 5 5
NTS TimeCycle Length 4 4 4 4
λL1 L1 Loss Weight 10 10 - -
λFM Feature Matching Loss Weight 0 5 - -
λP Perceptual Loss Weight 0 10 - -
λC Cycle-Consistency Loss Weight - - 10 -
λTC TimeCycle Loss Weight 10 10 10 10
LR Learning Rate 2e-4 2e-4 2e-4 2e-4
NE Number of Epochs 40 40 40 40
BS Batch Size 32 32 32 32

Table 4.1.: List of hyperparameters of all TimeCycleGAN models trained on 64× 64 images.

4.1.3. Temporally-Progressive Training

Similar to vid2vid [11], we train our models in a temporally-progressive manner, where
we divide the training into multiple stages while continuously increasing the lengths of
generated sequences. In particular, we start with a sequence length of one. Therefore, we first
train a model that can generate realistic individual frames, which we further fine-tune for
temporal consistency. We found that such temporal growing stabilizes the training and leads
to significantly faster convergence.

4.1.4. Sequence-Wise Data Augmentation

During training, we apply two techniques for data augmentation: random cropping, and
random horizontal flipping. Instead of applying these augmentations on a per-frame level, we

34

4. Implementation

perform them sequence-wise, so that the randomized augmentation parameters are constant
throughout the sequence.

Per-Sequence Parameter Sampling Given a sequence of T images of size H ×W, we first
upscale all images to size (H ∗ 1.1)× (W ∗ 1.1). Then, we random sample the top left corner
of the crop position (xcrop, ycrop) with xcrop ∈ [0, W ∗ 0.1] and ycrop ∈ [0, H ∗ 0.1], as well as a
random binary value 1 f lip ∈ {0, 1} that indicates the horizontal flipping.

Sequence-Wise Random Cropping and Horizontal Flipping Using the sampled parame-
ters, we then perform a random crop of size H×W on each upscaled frame of the sequence at
location (xcrop, ycrop), and flip each crop horizontally if 1 f lip = 1. Therefore, the augmentation
is the same for all frames within the sequence, which is essential to have temporally consistent
input sequences.

4.2. Applying TimeCycle Losses to Arbitrary GANs

As emphasized previously, our proposed TimeCycle loss is a general-purpose approach that
can be applied to arbitrary GAN models. Furthermore, adding the TimeCycle loss to an
existing PyTorch GAN model is very easy and does not require any modifications to the
model itself if the model implementation follows a few simple assumptions. In the following,
we will show how the TimeCycle loss can be added to custom GAN models.

4.2.1. TimeCycle Implementation

To separate the logic of the TimeCycle loss from the underlying model, we have implemented
the TimeCycle using a Python mixin class, which is an abstract class that cannot be instantiated
and provides additional functionality to subclasses that inherit from it. Thus, all it takes to
apply the TimeCycle to an arbitrary GAN class is to inherit from the TimeCycle mixin and
call its methods accordingly.

Required Methods In order to add a TimeCycle loss to a given GAN, we only need to call
three methods:

• define_timecycle(): Needs to be called once in the beginning to define the motion
models that shall be used for the TimeCycle.

• timecycle_forward(): Has to be called in every training iteration to define which
sequence the TimeCycle should be run on.

• timecycle_backward(): Has to be called once every iteration to calculate the TimeCycle
loss.

35

4. Implementation

Note that all methods contain an argument timecycle_name. By using different values for this
argument, arbitrarily many TimeCycles can be defined. Also note that define_timecycle()
contains various arguments to customize the TimeCycle, such as timecycle_type, which can
be used to specify special types of TimeCycle losses, such as the conditional TimeCycle loss
used for our paired and unpaired video-to-video translation models, or the TecoGAN [13]
Ping-Pong loss.

Optional Methods Additionally, the TimeCycle mixin contains several optional methods
that can be used to train a given discriminator together with the TimeCycle, as we suggested
in section 3.2.4:

• add_timecycle_discriminator(): Can be used to define discriminators that will be
trained in an adversarial fashion with the TimeCycle motion models. If any discrimi-
nators are defined in this way, timecycle_backward() will automatically calculate all
corresponding generator GAN losses.

• set_timecycle_discriminator_input(): Needs to be called in each iteration to define
what real images and conditioning images a discriminator will use. The fake images do
not need to be supplied, as these are already defined by timecycle_forward().

• timecycle_backward_D: Computes the GAN loss on TimeCycle images for all discrimi-
nators that were defined with add_timecycle_discriminator().

Note that all methods contain an argument discriminator_name, which can be used to define
multiple discriminators for the same TimeCycle. Additionally, the TimeCycle mixin has a
method define_logging(), which will return dictionaries of all TimeCycle images and losses
to be used for Tensorboard logging.

4.2.2. Adding the TimeCycle Loss to an Existing GAN

Step-By-Step Guideline

The TimeCycle loss can be applied to any PyTorch GAN implementation in five easy steps:

1. If the current implementation is not object-oriented, wrap the GAN model in a class.
We recommend the following structure:

class MyGAN:
def forward():
"""Generate a sequence"""

self.sequence = ...

def backward():
"""Compute your losses for the sequence"""

self.loss_D = ...
self.loss_G = ...

36

4. Implementation

def optimize_parameters():
"""Update your losses"""

optimizer.zero_grad(), freeze models, ...
self.loss_D.backward()
self.loss_G.backward()
optimizer.step

Note that it is not required to have your code split in exactly these methods, you just
need to have your per-iteraion code in separate methods, which could also be achieved
by e.g. having a single method train_iter(). However, having the optimization
split from the loss calculation is highly recommended, because it allows adding the
TimeCycle losses in a separate subclass, as we do in the following steps, instead of
having to modify the GAN model class itself.

2. Copy timecycle_mixin.py to your project, import it in the GAN implementation, and
build a new subclass that inherits from both the GAN model and the TimeCycle mixin:

from .timecycle_mixin import TimecycleMixin
class MyGANWithTimecycle(TimecycleMixin, MyGAN):

...

3. Overwrite the __init__() method to define the TimeCycle, as well as optional discrimi-
nators that should be trained with it:

def __init__(*args, **kwargs):
super().__init__(*args, **kwargs) # init your GAN and TimecycleMixin
self.define_timecycle(...)
self.add_timecycle_discriminator(...) # optional

4. Overwrite whichever method generates your sequence, add the TimeCycle forward
pass, and, optionally, define inputs of the discriminators:

def forward(*args, **kwargs):
super().forward(*args, **kwargs) # perform forward() of your GAN
self.timecycle_forward(...)
self.set_timecycle_discriminator_input(...) # optional

5. Overwrite whichever method calculates the losses and add the TimeCycle losses to the
respective GAN losses:

def backward(*args, **kwargs):
super().backward(*args, **kwargs) # perform backward() of your GAN
self.loss_G += self.timecycle_backward(...)
self.loss_D += self.timecycle_backward_D(...) # optional

37

4. Implementation

Full Example

After performing all of the above steps, your new class should look like this:

class MyGANWithTimecycle(TimecycleMixin, MyGAN):

def __init__(*args, **kwargs):
super().__init__(*args, **kwargs) # init your GAN and TimecycleMixin
self.define_timecycle(...)
self.add_timecycle_discriminator(...) # optional

def forward(*args, **kwargs):
super().forward(*args, **kwargs) # perform forward() of your GAN
self.timecycle_forward(...)
self.set_timecycle_discriminator_input(...) # optional

def backward(*args, **kwargs):
super().backward(*args, **kwargs) # perform backward() of your GAN
self.loss_G += self.timecycle_backward(...)
self.loss_D += self.timecycle_backward_D(...) # optional

As we see, adding the TimeCycle loss to the custom GAN model only required 13 lines of code,
three of which are optional. More complicated GAN architectures with multiple TimeCycles
and multiple discriminators can be defined similarly easily, simply by repeating all Time-
Cycle method calls with different values for the timecycle_name and discriminator_name
arguments.

38

5. Results and Evaluation

5.1. Datasets

5.1.1. Cityscapes

We use the Cityscapes dataset [28] as real target videos in all generation settings. Cityscapes
is a dataset for semantic segmentation, containing a total of 5000 high-resolution 2048× 1024
street-scene images recorded in various German cities, together with corresponding semantic
segmentation maps.

Cityscapes Sequences In addition to the official dataset, Cityscapes provides various aux-
iliary material, including short 30-frame sequences surrounding each image of the official
dataset. These sequences are what we will use to train all of our models.

Data Split We use the official training split of Cityscapes such that the training set consists
of 2975 sequences, the validation set of 500 sequences, and the test set of 1525 sequences.
With 30 frames per sequence, we, therefore, have 150000 total frames consisting of 89250
training frames, 15000 validation frames, and 45750 test frames.

Additional Demo Sequences In addition to the 5000 short 30-frame sequences, Cityscapes
also provides three longer demo videos containing 600, 1100, and 1200 frames each, which
allow us to observe long-term temporal consistency of a model. We use the first sequence for
qualitative validation and the second and third sequences for qualitative testing.

Semantic Segmentation Estimation In contrast to the official 5000 Cityscapes images, all
sequences and videos are unlabeled and do not contain any semantic segmentation infor-
mation. Therefore, we use a DeepLabV3 [29] semantic segmentation network to estimate
semantic segmentation maps for all sequences and videos. The DeepLabV3 model we used
was pretrained on ImageNet [30] and finetuned on the 2975 labeled training frames of the
official Cityscapes dataset.

Dataset Choice We selected the Cityscapes dataset specifically because it is a difficult dataset
for temporal consistency learning. Unlike most other video generation datasets, the back-
ground of Cityscapes is dynamically changing, both the camera and the foreground objects
are moving simultaneously, and both foreground and background objects vary considerably
in size, shape, and type. Furthermore, due to the semantic segmentation estimation, the

39

5. Results and Evaluation

source images used for paired video-to-video generation are imperfect and not temporally
consistent.

5.1.2. Carla

For unpaired video-to-video translation, we use synthetic street-scene videos as source images.
For this, we created a novel dataset using the open-source CARLA simulator [31], version
0.9.6. Our generated dataset contains 200 simulated sequences with 200 frames each, captured
in two different simulated cities: Town01 and Town02. Sequences are independent, and for
each sequence, we randomly spawn 80 vehicles and 10 pedestrians that will populate the
streets.

Data Split We split the generated sequences into train, validation, and test as follows: The
train set contains 160 sequences, with 80 sequences captured in Town01 and the other 80 in
Town02. Validation and test sets contain 20 sequences each, with 10 sequences from Town01
and 10 from Town02. Thus, our dataset contains 32000 training frames and 4000 frames for
each validation and test.

5.2. Quantitative Evaluation Metrics

Throughout this chapter, we will use four quantitative metrics to evaluate the various GAN
models. These metrics are:

• Fréchet Inception Distance (FID) [32] compares the distribution differences of Incep-
tionNet [33] activations and is used to evaluate the overall image quality and image
distribution similarity.

• Learned Perceptual Image Patch Similarity (LPIPS) [34] computes a weighted percep-
tual score between two images, based on AlexNet [35]. By computing the average LPIPS
score between real and fake images in paired generation settings, we aim to evaluate
the per-frame image quality and spatial consistency.

• Temporal Distance on Learned Perception (tLP) [13] measures the temporal consis-
tency of videos by comparing the LPIPS differences of subsequent images. Similar to
LPIPS, we compute the average tLP score over the entire test set.

• Temporal Distance on Optical Flow (tOF) [13] is the second temporal metric, which
computes the difference of optical flows extracted from real and fake images. Again, we
compute the average over the test set.

For all metrics, lower means better. In the following, we explain each metric in more detail:

40

5. Results and Evaluation

5.2.1. Fréchet Inception Distance

Fréchet Inception Distance (FID) [32] has long been a standard score used to evaluate the
performance of GANs. The Fréchet Inception Distance works as follows: First, an inception
network [33] is inferenced on real images from the test set and on generated test images.
Then, distributions of both outputs are generated, assuming Gaussian distributions for both.
Finally, the Fréchet distance is calculated between the two distributions:

FID(y, r) = ‖µr − µy‖2
2+Tr(Σr + Σy − 2(ΣrΣy)

1
2), (5.1)

where N (µr, Σr) and N (µy, Σy) are the Gaussian distributions of real and generated images,
respectively.

FID and Mode Collapse By comparing the distributions of images, the FID score ensures
that generated images are not only realistic but do also have a realistic image variance. Thus,
the FID score punishes mode collapse.

FID and Adversarial Attacks However, the FID score also has a weakness: it is based on an
inception network, which is itself imperfect. Thus, a higher score might not always correlate
with better image quality. In particular, one could build adversarial samples for the inception
network, which could look like random noise but achieve high FID scores.

5.2.2. Learned Perceptual Image Patch Similarity

The Learned Perceptual Image Patch Similarity (LPIPS) [34] is a metric that is closely related
to the perceptual loss that we discussed in Section 3.3.5. Based on the finding that such
perceptual losses coincide surprisingly well with differences in human perception, the LPIPS
metric was introduced. Similar to the perceptual loss, LPIPS calculates the distance of deep
feature activations in a pretrained perceptual network. However, instead of VGG19, the
AlexNet [35] network architecture is used. Also, instead of the L1 distance, the L2 distance
is used, and an additional weight layer is applied to the computed difference. This weight
layer was learned using the Berkeley Adobe Perceptual Patch Similarity (BAPPS) dataset [34] and
further improves the correlation between the deep feature activations and human perception.

Formula Given a real image x and a fake image x̃, the LPIPS score is computed as

LPIPS(x, x̃) = ∑
i∈{2,5,8,10,12}

1
Ni
||wi(AlexNet(i)(x)− AlexNet(i)(x̃))||2, (5.2)

where AlexNet(i) are the feature activations after the i-th layer in AlexNet, Ni is the number
of neurons in the i-th layer, and wi is the weight learned for the i-th layer.

Version There are several versions of the LPIPS metric. For all experiments in this paper,
we use LPIPS version 0.1, with the default network AlexNet. This also applies to the tLP
metric below.

41

5. Results and Evaluation

5.2.3. Temporal Distance on Learned Perception

To assess the temporal consistency in paired and unpaired generation, two metrics were
proposed in [13]: tLP and tOF. The first metric, tLP, measures the difference in LPIPS distances
between subsequent frames. Given two subsequent real images xt and xt+1 and corresponding
fake images x̃t and x̃t+1, tLP is computed as

tLP(xt, xt+1, x̃t, x̃t+1) = ||LPIPS(xt, xt+1)− LPIPS(x̃t, x̃t+1)||1, (5.3)

where LPIPS(x, x̃) is the LPIPS score defined in Equation 5.2. For our final score, we calculate
the tLP metric for all pairs of subsequent frames in the test set and average the results. We
use the same version of LPIPS as described in Section 5.2.2.

5.2.4. Temporal Distance on Optical Flow

The second temporal metric proposed in [13] is tOF, where the difference between the
estimated optical flows between two sequences is computed. Given two subsequent real
images xt and xt+1 and corresponding fake images x̃t and x̃t+1, this can be expressed as

tOF(xt, xt+1, x̃t, x̃t+1) = ||OF(xt, xt+1)−OF(x̃t, x̃t+1)||1, (5.4)

where OF(xt, xt+1) is the estimated optical flow between the two images xt and xt+1. Similar
to tLP, we calculate tOF for all pairs of subsequent images and average the scores. Note that,
instead of the optical flow estimation method by LucasKanade [36], we use FlowNet2 [22] to
compute the optical flow between two images.

5.3. Main Results

5.3.1. Paired Video-to-Video Translation

In our paired video-to-video translation setting we want to generate realistic street-scenes
videos from given corresponding semantic segmentation maps. In Figure 5.1 we show videos
generated by our strongest paired model, TimeCycleGAN-P++, on 256× 256 images of the
Cityscapes test demo sequences stuttgart_01 and stuttgart_02.

Qualitative Comparisons

We compare our models to both the baseline method pix2pix [1], as discussed in Section
2.1.3, as well as to the current state-of-the-art method vid2vid [11], which we covered in
Section 2.2.1. We compare all methods on 64× 64 images of the Cityscapes demo sequences
stuttgart_01 and stuttgart_02, as shown in Figure 5.2. Compared to pix2pix, all other methods
are significantly more temporally consistent. TimeCycleGAN-P++ seems similarly consistent
as TimeCycleGAN-P, but the video quality is much better. The videos generated by vid2vid
are sharper and the motion is more realistic than those of all other methods.

42

5. Results and Evaluation

(a) Cityscapes demo sequence stuttgart_01

(b) Cityscapes demo sequence stuttgart_02

Figure 5.1.: Results of our best paired video-to-video translation model TimeCycleGAN-P++
on 256× 256 Cityscapes test demo sequences. Top: demo sequence stuttgart_01. Bottom:
demo sequence stuttgart_02. The figure is best viewed with Acrobat Reader. Click on an image to
play the video clip.

43

5. Results and Evaluation
st

ut
tg

ar
t_

01
st

ut
tg

ar
t_

02

Figure 5.2.: Qualitative comparison of paired video-to-video translation methods on 64× 64
Cityscapes test sequences. Top: demo sequence stuttgart_01. Bottom: demo sequence
stuttgart_02. Methods from left to right: pix2pix (baseline), TimeCycleGAN-P (ours),
TimeCycleGAN-P++ (ours), vid2vid (state-of-the-art). All temporal methods are signficantly
more temporally consistent than pix2pix. TimeCycleGAN-P++ and vid2vid additionally have
higher video quality. Vid2vid produces the sharpest and most realistic results overall. The
figure is best viewed with Acrobat Reader. Click on an image to play the video clip.

44

5. Results and Evaluation

Quantitative Evaluation

To obtain quantitative results for all paired video-to-video translation methods, we inference
all models on the Cityscapes test set and compute the four metrics FID, LPIPS, tLP, and
tOF, as described in Section 5.2. The result of this comparison is shown in Table 5.1. As

Video Quality Temporal Consistency

Methods FID LPIPS tLP tOF

pix2pix 11.678e1 2.218e-1 20.938e-3 3.199e3
TCGAN-P 10.957e1 2.444 e-1 7.653e-3 2.902e3
TCGAN-P++ 4.695e1 1.967e-1 6.756e-3 2.938e3
vid2vid 3.259e1 2.135e-1 7.382e-3 1.720e3

Table 5.1.: Quantitative comparison of paired video-to-video translation methods on the
Cityscapes test set. FID and LPIPS metrics measure video quality, tLP and tOF measure
temporal consistency. For all metrics, lower means better. Methods from top to bottom:
pix2pix (baseline), TimeCycleGAN-P (ours), TimeCycleGAN-P++ (ours), vid2vid (state-of-
the-art). TimeCycleGAN-P significantly improves temporal consistency of pix2pix while
maintaining a similar video quality. TimeCycleGAN-P++ performs best in LPIPS and tLP,
vid2vid performs best in FID and tOF. Overall, vid2vid is the best model, but TimeCycleGAN-
P++ is close in both video quality and temporal consistency.

expected, all temporal models achieve significantly better scores than pix2pix in both temporal
metrics, with TimeCycleGAN-P++ achieving the lowest tLP score, and vid2vid achieving
the lowest tOF score. TimeCycleGAN-P is comparable to pix2pix in video quality, while
TimeCycleGAN-P++ and vid2vid are significantly better, likely due to the added perceptual
loss in both methods. Overall, TCGAN-P++ and vid2vid seem to be the best models, with
both achieving the lowest score in two metrics each. However, while the LPIPS and tLP scores
of TimeCycleGAN-P++ are only slightly below vid2vid, vid2vid performs significantly better
in both FID and tOF. Thus, vid2vid is the best-performing model overall in both video quality
and temporal consistency, confirming our previous qualitative analysis.

5.3.2. Unpaired Video-to-Video Translation

In unpaired video-to-video translation we jointly learn the generation of target sequences
from source sequences with the generation of source sequences from target sequences. Using
synthetic CARLA data as source, and Cityscapes as target, our unpaired models are then able
to perform both CARLA-to-Cityscapes and Cityscapes-to-CARLA translation. In Figures 5.3
and 5.4 we show 256× 256 test results of our TimeCycleGAN-UP model in both translation
directions.

45

5. Results and Evaluation

(a) Cityscapes demo sequence stuttgart_01

(b) Cityscapes demo sequence stuttgart_02

Figure 5.3.: Results of our unpaired TimeCycleGAN-UP model in Cityscapes-to-CARLA trans-
lation on two 256× 256 Cityscapes test demo sequences. Top: demo sequence stuttgart_01.
Bottom: demo sequence stuttgart_02. The figure is best viewed with Acrobat Reader. Click on an
image to play the video clip.

46

5. Results and Evaluation

Qualitative Comparisons

For qualitative comparisons in CARLA-to-Cityscapes translation, we inference all methods
on the CARLA test set. For Cityscapes-to-CARLA translation, we inference all methods on
the Cityscapes demo sequences stuttgart_01 and stuttgart_02. In Figures 5.5 and 5.6 we show
comparisons of the sequences generated by each method in the respective translation direction.
RecycleGAN and TimeCycleGAN-UP are more temporally consistent than CycleGAN in both
translation directions. However, CycleGAN seems to translate the individual input frames
more accurately, as background objects are sometimes ignored in the other two methods.
In CARLA-to-Cityscapes generation, the results of both RecycleGAN and TimeCycleGAN-
UP seem comparatively colorless. RecycleGAN seems to generate no color whatsoever,
while TimeCycleGAN-UP seems only to preserve the color of foreground objects. For
RecycleGAN, temporal style drifts can be observed in Cityscapes-to-CARLA generation,
while TimeCycleGAN-UP maintains the same style throughout each generated sequence.

Quantitative Evaluation

To obtain quantitative results in unpaired video-to-video translation, we evaluate all models
in both source-to-target and target-to-source generation. These two tasks are in the following
abbreviated as real and syn., which we define as:

• real: Generation of real images from synthetic images (CARLA→ Cityscapes)

• syn.: Generation of synthetic images from real images (Cityscapes→ CARLA)

Metrics Out of the four evaluation metrics of Section 5.2, only the FID score can be computed
in settings other than paired video-to-video translation. However, as proposed by [13], we can
approximate the tOF and tLP metrics in unpaired video-to-video translation by computing
the respective temporal difference with regard to the conditioning sequence instead, i.e. by

tLP(yt, yt+1, x̃t, x̃t+1) = ||LPIPS(yt, yt+1)− LPIPS(x̃t, x̃t+1)||1, (5.5)

and
tOF(yt, yt+1, x̃t, x̃t+1) = ||OF(yt, yt+1)−OF(x̃t, x̃t+1)||1, (5.6)

for conditioning inputs yt and yt+1 and corresponding generations x̃t and x̃t+1.

Evaluation Results We compute these three metrics for both tasks on the test set of the
respective translation direction. The corresponding evaluation results are shown in Table
5.2. Both RecycleGAN and TimeCycleGAN-UP improve upon the temporal consistency of
CycleGAN considerably, with great improvements in tLP scores. However, the video quality
of RecycleGAN is worse than that of CycleGAN, and, surprisingly, CycleGAN also has lower
tOF scores. Overall, TimeCycleGAN-UP is comparable to CycleGAN in video quality and
comparable to RecycleGAN in temporal consistency. Thus, TimeCycleGAN-UP is the best
performing model overall.

47

5. Results and Evaluation

Figure 5.4.: Results of our unpaired TimeCycleGAN-UP model in CARLA-to-Cityscapes
translation on three 256× 256 CARLA test set sequences. The figure is best viewed with Acrobat
Reader. Click on an image to play the video clip.

Figure 5.5.: Qualitative comparison of unpaired video-to-video translation methods in
CARLA-to-Cityscapes translation on three 64× 64 CARLA test set sequences. From left
to right: CycleGAN (baseline), RecycleGAN (state-of-the-art), TimeCycleGAN-UP (ours). Re-
cycleGAN and TimeCycleGAN-UP are more temporally consistent than CycleGAN, but result
in a lack of color. The generations of RecycleGAN seem entirely colorless. In TimeCycleGAN-
UP the color information of foreground objects is preserved. The figure is best viewed with
Acrobat Reader. Click on an image to play the video clip.

48

5. Results and Evaluation
st

ut
tg

ar
t_

01
st

ut
tg

ar
t_

02

Figure 5.6.: Qualitative comparison of unpaired video-to-video translation methods in
Cityscapes-to-CARLA translation on Cityscapes test sequences. Top: demo sequence
stuttgart_01. Bottom: demo sequence stuttgart_02. Methods from left to right: Cycle-
GAN (baseline), RecycleGAN (state-of-the-art), TimeCycleGAN-UP (ours). RecycleGAN
and TimeCycleGAN-UP are more temporally consistent than CycleGAN, but translate the
individual frames less accurately. For RecycleGAN, temporal style drifts can be observed,
while TimeCycleGAN-UP maintains the same style throughout the sequence. The figure is best
viewed with Acrobat Reader. Click on an image to play the video clip.

49

5. Results and Evaluation

Video Quality Temporal Consistency

FID tLP tOF

Methods real syn. real syn. real syn.

CycleGAN 8.992e1 19.686e1 15.126e-3 11.142e-3 3.888e3 2.284e3
RecycleGAN 15.915e1 21.682e1 6.992e-3 5.968e-3 4.288e3 2.791e3
TCGAN-UP 8.232e1 21.997e1 5.696e-3 8.403e-3 3.976e3 2.468e3

Table 5.2.: Quantitative comparison of unpaired video-to-video translation methods in
CARLA-to-Cityscapes generation (real) and Cityscapes-to-CARLA generation (syn.). FID
measures video quality. tLP and tOF measure temporal consistency and are computed with
regard to the conditioning sequence. For all metrics, lower means better. Methods from top
to bottom: CycleGAN (baseline), RecycleGAN (state-of-the-art), TimeCycleGAN-UP (ours).
RecycleGAN performs significantly better than CycleGAN in temporal consistency, but worse
in video quality. TimeCycleGAN-UP is comparable to RecycleGAN in temporal consistency
and close to CycleGAN in video quality. Thus, TimeCycleGAN-UP is the best model overall.

5.3.3. Unconditional Video Generation

In unconditional video generation, we simply inference the models several times in succession
to obtain a generation sequence. In Figure 5.7 we show generated sequences of both DCGAN
and TimeCycleGAN-U. As can be seen, the generations of DCGAN are not temporally
consistent. While TimeCycleGAN-U correctly learned temporal consistency, it is not required
to generate any motion in this setting, and, thus, learns to generate the easiest form of
temporal consistency - absolute mode collapse.

D
C

G
A

N
TC

G
A

N
-U

Frame t=0 Frame t+1 Frame t+5 Frame t+10 Frame t+25

Figure 5.7.: Qualitative comparison of unconditional video generation methods on five
generated frames (t=0, t+1, t+5, t+10, t+25). Top: DCGAN (baseline), bottom: TimeCycleGAN-
U (ours). DCGAN is not temporally consistent, TCGAN-U learned total mode collapse.

50

5. Results and Evaluation

5.4. Ablation Studies

5.4.1. TimeCycleGAN Components

To assess the effect of each component, we iteratively add them to a baseline model and
measure the corresponding metric changes. Starting with the baseline, we first adjust
the generator to be recurrent (GR), then we add the unconditional sequence discriminator
(GR+DS), followed by the TimeCycle loss (GR+DS+TC). We also build a model without
sequence discriminator (GR+TC) to check whether the TimeCycle loss requires a sequence
discriminator or whether it can also improve temporal consistency on its own. Thus, the five
models we compare are:

• Baseline: baseline model (pix2pix in paired setting, CycleGAN in unpaired setting)

• GR: baseline model with recurrent generator

• GR + DS: baseline model with recurrent generator and sequence discriminator

• GR + TC: baseline model with recurrent generator and TimeCycle loss

• GR + DS + TC: full TimeCycleGAN model (baseline model with recurrent generator,
sequence discriminator and TimeCycle loss)

Paired Video-to-Video Translation

For the ablation study in paired video-to-video translation, we choose pix2pix [1] as baseline
method such that the full model (GR+DS+TC) is exactly our proposed TimeCycleGAN-
P, as covered in Section 3.3.4. We use the same setup as used in Section 5.3.1 and the
hyperparameters listed in Table 4.1 for all models. Since the baseline model is trained on
individual frames instead of sequences of length T, we increase the batch size of the baseline
method by a factor of T such that the total number of parameter update steps is the same for
all models. The result of the ablation study is shown in Table 5.3. As we can see, the recurrent
generator design significantly improves the tLP metric, while all other metrics remain mostly
unchanged. Adding the sequence discriminator further improves the tLP metric significantly,
and also slightly lowers the tOF metric, however at the cost of significantly worse video
quality as measured by both FID and LPIPS. Adding the additional TimeCycle loss mitigates
the FID increase and further improves the tOF metric. Adding a TimeCycle loss without
sequence discriminator also improves both temporal metrics and does not lead to an increase
in FID. Note that each individual component leads to better scores in both temporal metrics.
The best model overall is the full model with all three components, which achieves a 63.5
percent reduction in tLP and a 9.2 percent reduction in tOF compared to the baseline method.

Unpaired Video-to-Video Translation

In the unpaired video-to-video translation setting we choose CycleGAN [2] as baseline
method such that the full model (GR+DS+TC) is the TimeCycleGAN-UP model described in

51

5. Results and Evaluation

Section 3.3.3. We use the same setup as Section 5.3.2. Again, we use the hyperparameters
listed in Table 4.1 for all models and increase the batch size of the baseline method by a
factor of T such that the total number of parameter update steps is the same for all models.
Ablation study results are shown in Table 5.4. Similar to the paired setting, we can observe
that the recurrent generator significantly improves the tLP metric for generations in both
directions. Additionally, it also improves tOF scores slightly. Adding the additional sequence
discriminator again yields further improvements in tLP at the cost of worsened FID scores.
However, unlike in the paired setting, the sequence discriminator seems to worsen the tOF
metric considerably, and adding the additional TimeCycle loss leads to further deterioration
in both FID and tOF instead of mitigating the issues. The TimeCycle loss without sequence
discriminator seems to perform better in this setting, as it leads to a comparable reduction in
tLP without affecting the video quality. Overall, the two best methods in this setting are the
model with recurrent generator only and the model with recurrent generator and TimeCycle
loss. Both result in comparable video quality, while the former performs better in tOF and
the latter in tLP, reducing tLP by 46.3 percent compared to the baseline.

5.4.2. TimeCycle Loss Types

In Section 3.2 we proposed two versions of the TimeCycle loss: A general-purpose uncondi-
tional version where the motion model predicts subsequent frames from the two previous
generations, and a task-specific version for conditional generation where the motion model
shifts the previous generation to the location given by the conditioning input. The former
was used in our unconditional TimeCycleGAN-U model, and the latter in our conditional
TimeCycleGAN-UP, TimeCycleGAN-P and TimeCycleGAN-P++ models. In the following, we
will compare the two types in the paired video-to-video translation setting with similar setup
as Section 5.3.1 and same hyperparameters as shown in Table 4.1. Additionally, we compare
them to the TecoGAN [13] Ping-Pong loss, which can be seen as another type of specialized
TimeCycle loss, as we argue in Section A.2.1. Since the original Ping-Pong loss uses the L2

distance, we perform all comparisons with both L1 and L2 loss formulations. Thus, the seven
models we compare are:

• Baseline: baseline model (TimeCycleGAN-P without TimeCycle loss)

• TC-C L1: baseline model with conditional TimeCycle loss with L1 distance

• TC-C L2: baseline model with conditional TimeCycle loss with L2 distance

• TC-U L1: baseline model with unconditional TimeCycle loss with L1 distance

• TC-U L2: baseline model with unconditional TimeCycle loss with L2 distance

• PP L1: baseline model with Ping-Pong loss with L1 distance

• PP L2: baseline model with Ping-Pong loss with L2 distance

52

5. Results and Evaluation

Video Quality Temporal Consistency

Model FID LPIPS tLP tOF

Baseline 1.168e2 2.218e-1 20.938e-3 3.199e3
GR 1.132e2 2.229e-1 14.482e-3 3.185e3
GR + DS 1.781e2 2.441e-1 7.652e-3 3.006e3
GR + TC 1.138e2 2.518e-1 12.212e-3 3.161e3
GR + DS + TC 1.096e2 2.444 e-1 7.653e-3 2.902e3

Table 5.3.: Ablation study of TimeCycleGAN components in the paired video-to-video transla-
tion setting. Methods from top to bottom: baseline, baseline with recurrent generator, baseline
with recurrent generator and sequence discriminator, baseline with recurrent generator and
TimeCycle loss, baseline with all three components. Each individual component reduces both
tLP and tOF metrics. The model with all three components performs best overall.

Video Quality Temporal Consistency

FID tLP tOF

Model real syn. real syn. real syn.

Baseline 8.992e1 19.686e1 15.126e-3 11.142e-3 3.888e3 2.284e3
GR 10.272e1 18.643e1 9.840e-3 9.041e-3 3.870e3 2.181e3
GR + DS 13.751e1 20.999e1 11.776e-3 5.938e-3 4.018e3 2.483e3
GR + TC 8.232e1 21.997e1 5.696e-3 8.403e-3 3.976e3 2.468e3
GR + DS + TC 16.261e1 23.490e1 8.669e-3 8.122e-3 4.124e3 2.666e3

Table 5.4.: Ablation study of TimeCycleGAN components in the unpaired video-to-video
translation setting. Methods from top to bottom: baseline, baseline with recurrent generator,
baseline with recurrent generator and sequence discriminator, baseline with recurrent genera-
tor and TimeCycle loss, baseline with all three components. The recurrent generator design
leads to improvements in both temporal metrics. Sequence discriminator and TimeCycle loss
improve tLP but worsen tOF. The sequence discriminator also worsens FID significantly.
Combining sequence discriminator and TimeCycle loss performs worse than both components
individually. The best models are the model with recurrent generator only, and the model
with recurrent generator and TimeCycle loss.

53

5. Results and Evaluation

The results of the study can be seen in Table 5.5. As shown, the L1 version of each loss type
performs significantly better than the L2 version with regard to both FID and LPIPS. For
both the conditional TimeCycle loss and the Ping-Pong loss, the L1 version also achieves
noticeable improvements in tLP, while the L2 version even leads to worse results than the
baseline in all metrics except tOF. Thus, the L1 loss formulations are strictly preferable for all
loss types. Among all the L1 loss type versions, the conditional TimeCycle loss achieves the
lowest FID and tOF score, the unconditional TimeCycle loss the lowest tLP score, and the
Ping-Pong loss the lowest LPIPS score. Overall, the unconditional TimeCycle loss performs
best with regard to temporal consistency, but the other two loss types perform slightly better
with regard to video quality.

Video Quality Temporal Consistency

Model FID LPIPS tLP tOF

Baseline 1.781e2 2.441e-1 7.652e-3 3.006e3
TC-C L1 1.096e2 2.444e-1 7.653e-3 2.902e3
TC-C L2 2.041e2 2.586e-1 8.022e-3 2.951e3
TC-U L1 1.340e2 2.339e-1 6.507e-3 3.015e3
TC-U L2 1.725e2 2.428e-1 6.453e-3 3.072e3
PP L1 1.413e2 2.190e-1 7.423e-3 2.976e3
PP L2 1.926e2 2.663e-1 9.870e-3 2.965e3

Table 5.5.: Comparison of TimeCycle loss types. From top to bottom: baseline model, baseline
model with conditional L1 TimeCycle loss, baseline model with conditional L2 TimeCycle loss,
baseline model with unconditional L1 TimeCycle loss, baseline model with unconditional L2

TimeCycle loss, baseline model with L1 Ping-Pong loss, baseline model with L2 Ping-Pong
loss. L1 versions are strictly preferable to L2 versions for all loss types. Unconditional L1

TimeCycle loss performs best with regard to temporal consistency. Conditional L1 TimeCycle
loss and L1 Ping-Pong loss perform best with regard to video quality.

5.4.3. Sequence Discriminator Conditioning

In paired video-to-video translation, a conditional sequence discriminator DS could be used,
which also receives the source images st:(t+Nd−1) as input for a given sequence xt:(t+ND−1). In
the following, we compare such conditional sequence discriminators to the unconditional
sequence discriminator used in our TimeCycle, as introduced in section 3.1.2. We use the
setup of Section 5.3.1 with the hyperparameters shown in Table 4.1. For both discriminator
types, we measure the standalone performance and the performance when combined with
the TimeCycle loss. As the baseline method, we choose pix2pix [1] with a recurrent generator
such that the model with both unconditional sequence discriminator and TimeCycle loss
corresponds to the TimeCycleGAN-P model of Section 3.3.4. In summary, the five models we
compare are:

54

5. Results and Evaluation

• Baseline: baseline model (pix2pix with recurrent generator)

• DS-C: baseline model with conditional sequence discriminator

• DS-C + TC: baseline model with conditional sequence discriminator and TimeCycle loss

• DS-U: baseline model with unconditional sequence discriminator

• DS-U + TC: baseline model with unconditional sequence discriminator and TimeCycle
loss

In Table 5.6 the results of the study are shown. Compared to the baseline method, all models
have considerably better tLP and tOF scores. However, the reduction of tLP is strongest for the
unconditional sequence discriminator, so it can be concluded that the unconditional sequence
discriminator performs strictly better with regard to temporal consistency. Concerning
video quality, all models are worse than the baseline, with the standalone unconditional
sequence discriminator performing worst. However, when combined with the TimeCycle
loss, the unconditional sequence discriminator performs best, and even achieves a lower
FID score than the baseline. Among the four sequence discriminator versions, the model
with unconditional sequence discriminator and TimeCycle loss performs best with regard
to both video quality and temporal consistency. Therefore, we use unconditional sequence
discriminators in all our TimeCycleGAN models.

Video Quality Temporal Consistency

Model FID LPIPS tLP tOF

Baseline 1.132e2 2.229e-1 14.482e-3 3.185e3
DS-C 1.438e2 2.266e-1 9.396e-3 2.928e3
DS-C + TC 1.334e2 2.542e-1 9.585e-3 3.014e3
DS-U 1.781e2 2.441e-1 7.652e-3 3.006e3
DS-U + TC 1.096e2 2.444 e-1 7.653e-3 2.902e3

Table 5.6.: Comparison of unconditional and conditional sequence discriminators in paired
video-to-video translation. Models from top to bottom: baseline (pix2pix with recurrent
generator), baseline with conditional sequence discriminator, baseline with conditional se-
quence discriminator and TimeCycle loss, baseline with unconditional sequence discriminator,
baseline with unconditional sequence discriminator and TimeCycle loss. The unconditional
sequence discriminator leads to better temporal consistency than the conditional sequence
discriminator. The best model overall is the model with unconditional sequence discriminator
and TimeCycle loss.

5.4.4. Sequence-Wise Data Augmentation

We also examine the effect of our sequence-wise data augmentation techniques proposed in
Section 4.1.4 by comparing the performance of our TimeCycleGAN-P model with and without

55

5. Results and Evaluation

the data augmentation techniques. We use the setup in Section 5.3.1 and the hyperparameters
in Table 4.1 again. The four models we compare are:

• Baseline: baseline model (TimeCycleGAN-P without data augmentation)

• Crop: baseline model with sequence-wise random cropping

• Flip: baseline model with sequence-wise horizontal random flips

• Crop + Flip: baseline model with both augmentation techniques

As shown in Table 5.7, both data augmentation techniques improve all four metrics individu-
ally and combining both techniques achieves the best performance overall. When combined,
the two data augmentation techniques reduce FID by 29.2 percent and tLP by 36.4 percent.

Video Quality Temporal Consistency

Model FID LPIPS tLP tOF

Baseline 1.584e2 2.589e-1 12.040e-3 2.972e3
Crop 1.474e2 2.461e-1 7.152e-3 2.966e3
Flip 1.333e2 2.230e-1 8.845e-3 2.915e3
Crop + Flip 1.096e2 2.444e-1 7.653e-3 2.902e3

Table 5.7.: Ablation study for sequence-wise data augmentations. Models from top to bottom:
baseline, baseline with sequence-wise random crops, baseline with sequence-wise horizontal
random flips, baseline with both sequence-wise data augmentation techniques. The data
augmentation techniques improve all metrics, with significant reductions in FID and tLP.

56

6. Discussion

6.1. Summary

In this thesis, we propose TimeCycleGAN, a novel approach for temporal consistency learning
in generative adversarial networks.

Contributions:

• We introduce a new loss for temporal consistency, which has fewer restrictions than
existing approaches, and which can be applied to arbitrary GAN models with only a
few lines of code.

• Based on the novel loss, we formulate a simple, yet powerful, meta-architecture for
temporally-consistent GANs.

• Using the meta-architecture, we design novel models for unconditional video generation,
paired video-to-video translation, and unpaired video-to-video translation.

• The paired video-to-video translation models improve temporal consistency scores of
the baseline by up to 63.5 percent. In quantitative comparisons, our strongest model is
close to the task-specific state-of-the-art.

• The unpaired video-to-video translation model improves temporal consistency scores
by up to 46.3 percent, and even outperforms the state-of-the-art in its domain.

Key Insights:

• We argue that recurrent generator designs are currently best suited for video generation.

• We found that unconditional sequence discriminators perform better than conditional
sequence discriminators for temporal consistency learning in paired video-to-video
translation, especially when combined with our TimeCycle loss.

• We show that the L1 distance is the preferable choice for both our TimeCycle loss and
the TecoGAN Ping-Pong loss.

• We empirically confirm that perceptual losses correlate highly with human perception
and that they can considerably improve the video quality of paired video-to-video
translation methods.

• We show that sequence-wise data augmentation techniques can improve the generaliza-
tion performance of video generation models.

57

6. Discussion

6.2. Limitations

Background Synthesis The unpaired results in Section 5.3.2 show that most methods,
including ours, do not accurately translate the background. This, however, is caused by a
mismatch in datasets and could be solved by more careful task-specific dataset collection.

Motion Learning As shown in Section 5.3.3, our meta-architecture can enforce temporal
consistency between subsequent frames, but it cannot enforce any motion. Thus, we cannot
generate realistic videos in settings where the motion itself is not provided.

Training Instability A common issue of all our models is unstable training. In particular,
sequential discriminators often perform too well, converging to zero loss, or the training, in
general, converges to a poor local minimum, such as extremely dark, or generally unrealistic
images. However, these issues can mostly be avoided by careful hyperparameter tuning.

Motion Model Mode Collapse An especially common training failure case is a sort of
perceptual mode collapse that results in motion models that merely reconstruct its input,
similar to an autoencoder, without learning any motion whatsoever. To prevent that, we tried
to further constrain the motion models with additional losses, as outlined in Section A.3,
however, without much success. The TimeCycle loss is unfortunately still highly susceptible
to this issue, but, surprisingly, we found that realistic motion can be learned even in cases
where this training failure occurs. This might suggest that even a simple L1 loss between
subsequent generations could already improve temporal consistency considerably.

Visual Artifacts Visual artifacts can arise from the adversarial loss on motion models if the
motion model architecture is too simple. Also, for some of our models, temporal blurring
or swimming can be observed, which is another type of visual artifact, caused by sequence
discriminator training instability. Additional optical flow losses might alleviate this issue.

Memory Consumption The TimeCycle loss is highly memory intensive. Therefore, it cannot
be applied to arbitrarily long sequences. However, realistic videos of several hundred frames
can be generated even by models that were only trained on three-frame sequences at a time.
Thus, it might not be necessary to perform TimeCycles over longer sequences in practice.

6.3. Future Work

TimeCycleGAN with Optical Flow As shown in Section 5.3.1, vid2vid [11] still outperforms
our best TimeCycleGAN model, and particularly the motion between frames is more realistic.
Thus, incorporating optical flow losses into our TimeCycleGAN approach could lead to great
improvements.

58

6. Discussion

Architectural Improvements We believe that significantly better results could be achieved
by improving the network architectures of our models. In particular, the recurrent generators
and motion models in our TimeCycleGAN models are all simple feed-forward networks, so
replacing those by actual recurrent neural networks might make the training significantly
faster and improve temporal consistency. Furthermore, our discriminator architectures
are very simple and not custom-designed for video generation, so incorporating more
sophisticated discriminator designs, such as the TecoGAN [13] triplet-discriminator, might
lead to significant improvements. Lastly, it could be worthwhile to incorporate some other
promising new GAN techniques into our TimeCycleGAN, such as spectral normalization [37]
or self-attention [38, 39, 40], as used in some recent GAN methods [41, 42].

Motion Generation While our meta-architecture can currently not generate realistic videos
in settings where the motion is not explicitly given, we believe that such applications could
be enabled through additional losses or restrictions that punish inactivity. We also believe
that the field of unconditional video generation still has ample opportunity for substantial
improvements.

Supervised Video Generation Since deep features of perceptual networks seem to correlate
highly with human image perception [34], we argue that it should be possible to train good
video generation models in a purely supervised fashion, without any adversarial training,
as the TimeCycle loss is not GAN-specific either and can, in theory, be used in any setting.
We believe such research could be highly useful because it might provide valuable insights
and effective stabilization losses for GAN training, which could then further advance the
GAN-based state-of-the-art.

59

A. Appendix

A.1. Network Design

A.1.1. Recurrent Generator Design

Backpropagation Through Time

In our recurrent generators, we generate subsequent frames based on the previous ones
and perform backpropagation through time such that subsequent frames also influence the
gradient that the generator receives from previous frames. Experimentally we found that the
backpropagation through time improves temporal consistency significantly and that there is
no significant difference in training time, as long as all generator losses are backpropagated
jointly (by summing up all losses and calling .backward() only once in PyTorch).

Number of Input Frames

In vid2vid [11], the generator is conditioned on L previous frames and corresponding
semantic segmentation maps. Specifically, L = 2 is used because L = 1 was reported to lead
to training instability, whereas larger values for L lead to slower training and larger memory
consumption. In our models, we did not find any performance difference between L-values,
and we did not encounter any additional training instability with L = 1. Furthermore, we
found that the conditioning on previous semantic segmentation does not lead to performance
improvements either. Thus, we only condition our generator on the current conditioning
input and the last generation.

Input Random Noise

As denoted in equations 3.2 and 3.3, the recurrent generator generates each sequence from a
sequence of NG random noise images z1:NG . We experimented with three types of noise:

• no noise with zt = 0,

• random noise images drawn from a standard-normal distribution zt ∼ N (0, 1),

• random noise images drawn from a uniform distribution zt ∼ U (−1, 1).

Experimentally we found that standard-normal random noise works best, and since it is
also the preferred choice from a theoretical point of view [43], we use the standard-normal
random noise for all models.

60

A. Appendix

A.1.2. Motion Model Design

Motion Model Architecture

As mentioned in section 4.1.1, we use the same network architecture for the motion models
that we use for the GAN generator, just with less residual blocks such that the receptive field
size for each generated pixel is roughly one-fifth of the image. Experimentally we found
that using a larger motion model does not improve the quality of generated videos; it only
increases memory usage and slows down the training significantly. Furthermore, it makes the
optimization more difficult because the motion model might generate realistic images without
relying on the generator, which can result in a scenario where only the discriminator and the
motion model learn together in adversarial fashion while the generator gets left behind.

Separate Motion Models

In our implementation, we only use a single motion model to perform both forward-warping
and backward-warping. We tried splitting this model up into two separate models, one for
forward-warping and one for backward-warping, but we found no significant differences
between the generation results.

A.2. Comparison to Alternative Designs

A.2.1. TimeCycle Loss and Ping-Pong Loss

As discussed in Section 2.2.3, TecoGAN [13] proposes the Ping-Pong loss to learn long-term
temporal consistency by generating a sequence first forwards and then backwards and by
then constraining the corresponding generations of each frame to be close to each other. This
can be seen as a special case of the TimeCycle loss, where the motion model is the generator
itself, and where the cycle reconstructions are omitted since the backward predictions are
now already reconstructions themselves. Because the TimeCycle and Ping-Pong losses are
closely related, the two losses perform almost equally well, as we showed in Section 5.4.2.
However, contrary to [13], we found that it is beneficial to use the L1 distance in all losses,
including the Ping-Pong loss, as the L2 distance can result in visual artifacts.

A.2.2. Other Types of Sequential Generators

3D Generators

Another way of establishing correlation between frames in a sequence is to generate the entire
sequence at once, as several methods have proposed by using 3D-convolutional generators
[44, 45, 46, 47, 48]. While these methods show promising results, they are highly memory-
intensive and scale poorly to higher resolutions and longer sequences. Therefore, we argue
that such sequence-wise generators are currently not yet well suited for truly realistic video
generation.

61

A. Appendix

Temporal Consistency Through Mode Collapse

Some methods claim to learn temporal consistency with a simple per-frame generator where
each frame is generated independently. However, we argue that the perceived temporal
consistency of such methods is caused by an extreme mode collapse. While impressive results
can be achieved in narrow domains even with mode collapse, such methods will not be able
to handle dynamic style changes and will likely fail at generalizing to unseen data.

A.3. TimeCycle Extensions

A.3.1. TimeCycle Warp Losses

Inspired by the optical flow losses in vid2vid [11], we experimented with two additional warp
losses for our TimeCycle:

Real Warp Loss The first loss,

LTCW,real (M) = Ex1:T [
1

T − 1

T−1

∑
t=1
||M(xt, c f

t)− xt+1||1 + ||M(xt+1, cb
t+1)− xt||1], (A.1)

is a loss for the motion model only, which trains it to correctly warp real frames. This should
further constrain the motion model to ensure it learns proper temporal warping.

Fake Warp Loss The second loss,

LTCW, f ake(G|M) = Ex1:T [
1

T − 1

T−1

∑
t=1
||M(x̃t, c f

t)− x̃t+1||1 + ||M(x̃t+1, cb
t+1)− x̃t||1], (A.2)

is similar to the first, except that we calculate it on the generated frames, and detach the result
of the motion model. Thus, the motion model does not learn from this loss, but only the
generator, which is thereby explicitly constrained to generate images such that the difference
between subsequent frames is minimal, which should further improve short-term temporal
consistency.

Similarity to vid2vid Losses If we assume that our motion model learns a motion function
that is equivalent to the optical flow prediction combined with optical flow warping, then
these two losses are similar to the flow loss and warp loss in vid2vid, as introduced in
equations 2.15 and 2.16 respectively. The only difference is that we omit the comparison to
the reference flow in equation A.1, since we never predict any optical flow explicitly.

Results In practice, we found that the first loss on real images in equation A.1 leads to lower
video quality with similar temporal consistency. The second loss term in equation A.2 seemed
to improve temporal consistency, however, so it might be worthwhile to conduct further
experiments with these losses. For now, we did not include them in our TimeCycleGAN
models, as the results were ambiguous.

62

A. Appendix

A.3.2. TimeCycle + Sequence Discriminator

In addition to using the sequence discriminator to discriminate the sequence generated by
the generator, we also tried to apply it to the sequence that is formed by the intermediate
TimeCycle predictions used for the prediction similarity loss in section 3.2.3. We expected
this to improve temporal consistency further but observed no significant improvements.

A.3.3. TimeCycle on Real Images

To further constrain the motion models, we experimented with an additional loss, where the
motion models perform a TimeCycle on real sequences, and a TimeCycle loss is computed,
similar to equation 3.25. We expected that this would stabilize the training by enforcing that
the motion model learns valid motions. However, we observed no significant improvements,
but a slight video quality deterioration instead.

63

List of Figures

1.1. Applying TimeCycleGAN to Per-Frame GANs 2

3.1. Per-Frame GAN Model . 14
3.2. Per-Frame Generator vs. Recurrent Generator 16
3.3. Per-Frame Discriminator vs. Sequence Discriminator 17
3.4. Sequential GAN Training . 19
3.5. Sequential Generative Adversarial Network . 20
3.6. Flow Diagram of TimeCycleGAN . 24
3.7. TimeCycleGAN Visualization . 25
3.8. Video Generation Tasks . 27
3.9. Comparison of L1, Feature Matching and Perceptual Losses 31

5.1. TimeCycleGAN-P++ Results . 43
5.2. Qualitative Comparison of Paired Video-to-Video Translation Methods 44
5.3. TimeCycleGAN-UP Results in Cityscapes-to-CARLA Translation 46
5.4. TimeCycleGAN-UP Results in CARLA-to-Cityscapes Translation 48
5.5. Qualitative Comparison of Unpaired Video-to-Video Translation Methods in

CARLA-to-Cityscapes Translation . 48
5.6. Qualitative Comparison of Unpaired Video-to-Video Translation Methods in

Cityscapes-to-CARLA Translation . 49
5.7. Qualitative Comparison of Unconditional Video Generation Methods 50

64

List of Tables

4.1. TimeCycleGAN Model Hyperparameters . 34

5.1. Quantitative Comparison of Paired Video-to-Video Translation Methods 45
5.2. Quantitative Comparison of Unpaired Video-to-Video Translation Methods . . 50
5.3. Ablation Study of TimeCycleGAN Components in Paired Video-to-Video Trans-

lation . 53
5.4. Ablation Study of TimeCycleGAN Components in Unpaired Video-to-Video

Translation . 53
5.5. Comparison of TimeCycle Loss Types . 54
5.6. Comparison of Sequence Discriminators . 55
5.7. Ablation Study for Sequence-Wise Data Augmentations 56

65

Glossary

CycleGAN Method for unpaired image-to-image translation. 6

Discriminator Discriminator, part of a generative adversarial network. 3

Deep Convolutional GAN Method for unconditional image generation. 4

Fréchet Inception Distance Metric for evaluating the image quality of GAN generations. 42

Generator Generator, part of a generative adversarial network. 3

Generative Adversarial Network Deep learning approach for video generation: two neural
networks are trained in adversarial fashion. 3

Image-to-Image Translation The task of generating images from other images. 4

Learned Perceptual Image Patch Similarity Metric for evaluating the image quality of GAN
generations in paired settings. 42

TimeCycle Loss Our proposed general-purpose loss for temporal consistency. 24

PatchGAN Discriminator of pix2pix processing images patch-wise. 4

pix2pix Method for paired image-to-image translation. 4

pix2pixHD Method for paired high-resolution image-to-image translation. 5

RecycleGAN Method for unpaired video-to-video translation. 9

Temporal Cycle-Consistency Ability of a model to reconstruct its input through a temporal
backward-forward generation cycle. 22

Temporally Cycle-Consistent Adjective refering to high temporal cycle-consistency. 12

TimeCycleGAN Our proposed meta-architecture for GAN-based video generation. 24

TimeCycleGAN-P Our TimeCycleGAN model for paired video-to-video translation. 30

TimeCycleGAN-P++ Our improved TimeCycleGAN model for paired video-to-video trans-
lation with additional feature matching and perceptual losses. 30

66

Glossary

TimeCycleGAN-U Our TimeCycleGAN model for unconditional video generation. 27

TimeCycleGAN-UP Our TimeCycleGAN model for unpaired video-to-video translation. 27

Temporally Coherent GAN Method for paired and unpaired video-to-video translation. 9

vid2vid Method for paired high-resolution video-to-video translation. 7

Video-to-Video Translation The task of generating videos from other videos. 7

67

Acronyms

D Discriminator. 3

DCGAN Deep Convolutional GAN. 4

DS Sequence Discriminator. 8, 15

FID Fréchet Inception Distance. 42

G Generator. 3

GAN Generative Adversarial Network. 3

Ĝ Combined generator in vid2vid. 7

λ Loss weight hyperparameter. 5

LC Cycle-consistency loss for unpaired generation settings. 6

LcGAN Conditional adversarial loss in conditional generative adversarial networks. 4

LF Flow loss in vid2vid. 7

LFM Auxiliary feature matching loss used in paired generation settings. 5, 30, 31

LGAN Adversarial loss in generative adversarial networks. 3

LGANTC Adversarial motion model loss, part of the TimeCycle Loss. 23

Lidt Identity mapping loss used in some unpaired generation applications. 6

LL1 Auxiliary L1 loss used in paired generation settings. 4

LL2 Auxiliary L2 loss used in TecoGAN. 11

LP Auxiliary perceptual loss used in paired generation settings. 5, 31

LPIPS Learned Perceptual Image Patch Similarity. 42

LPP Ping-Pong loss of TecoGAN. 10

LRC Recycle loss - spatio-temporal cycle-consistency loss used in RecycleGAN. 9

LRCpred Recurrent loss used for predictor training in RecycleGAN. 9

68

Acronyms

LsGAN Sequential adversarial loss in our sequential generative adversarial networks. 18

LTC TimeCycle Loss. 24

LTCpred Prediction similarity loss, part of the TimeCycle loss. 23

LTCrec Temporal cycle-consistency loss, part of the TimeCycle Loss. 23

LW Optical flow warp loss in vid2vid and TecoGAN. 8

M Motion model, part of TimeCycleGAN. Also, mask prediction network in vid2vid. 7, 21

ND Number of input frames of sequence discriminators. 8

NDS Number of spatial scales in spatial multi-scale discrimination. 5

NDT Number of temporal scales in temporal multi-scale discrimination. 8

NG Number of previous generations a recurrent generator is conditioned on. 7

NTC Number of previous frames over which temporal cycle-consistency learning is performed.
12

φ Feature extraction network in temporal cycle-consistency learning. 11

T Sequence length in sequential GAN training. 7

T Tracking network in temporal cycle-consistency learning. 11

TCGAN-P++ TimeCycleGAN-P++. 30

TCGAN-P TimeCycleGAN-P. 30

TCGAN-U TimeCycleGAN-U. 27

TCGAN-UP TimeCycleGAN-UP. 27

TecoGAN Temporally Coherent GAN. 9

tLP Metric for evaluating temporal consistency of GANs in paired settings, based on LPIPS.
43

tOF Metric for evaluating temporal consistency of GANs in paired settings, based on optical
flow. 43

W Optical flow prediction network in vid2vid. 7

warp Optical flow warping operation. 7

69

Acronyms

x Real target images. 3

x̃ Fake (generated) target images. 3

y Real source/conditioning images. 3

ỹ Fake (generated) source/conditioning images. 6

z Random noise used as generator input. 3

70

Bibliography

[1] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. “Image-to-image translation with conditional
adversarial networks”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 1125–1134.

[2] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. “Unpaired image-to-image translation using
cycle-consistent adversarial networks”. In: Proceedings of the IEEE international conference
on computer vision. 2017, pp. 2223–2232.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. “Generative adversarial nets”. In: Advances in neural information processing
systems. 2014, pp. 2672–2680.

[4] A. Radford, L. Metz, and S. Chintala. “Unsupervised representation learning with
deep convolutional generative adversarial networks”. In: arXiv preprint arXiv:1511.06434
(2015).

[5] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. “Striving for simplicity:
The all convolutional net”. In: arXiv preprint arXiv:1412.6806 (2014).

[6] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network training by
reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167 (2015).

[7] V. Nair and G. E. Hinton. “Rectified linear units improve restricted boltzmann ma-
chines”. In: Proceedings of the 27th international conference on machine learning (ICML-10).
2010, pp. 807–814.

[8] A. L. Maas, A. Y. Hannun, and A. Y. Ng. “Rectifier nonlinearities improve neural
network acoustic models”. In: Proc. icml. Vol. 30. 1. 2013, p. 3.

[9] B. Xu, N. Wang, T. Chen, and M. Li. “Empirical evaluation of rectified activations in
convolutional network”. In: arXiv preprint arXiv:1505.00853 (2015).

[10] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro. “High-resolution
image synthesis and semantic manipulation with conditional gans”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 8798–8807.

[11] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, G. Liu, A. Tao, J. Kautz, and B. Catanzaro. “Video-to-
Video Synthesis”. In: Advances in Neural Information Processing Systems (NIPS). 2018.

[12] A. Bansal, S. Ma, D. Ramanan, and Y. Sheikh. “Recycle-gan: Unsupervised video
retargeting”. In: Proceedings of the European conference on computer vision (ECCV). 2018,
pp. 119–135.

[13] M. Chu, Y. Xie, L. Leal-Taixé, and N. Thuerey. “Temporally coherent gans for video
super-resolution (tecogan)”. In: arXiv preprint arXiv:1811.09393 (2018).

71

Bibliography

[14] G. E. Hinton and R. R. Salakhutdinov. “Reducing the dimensionality of data with
neural networks”. In: science 313.5786 (2006), pp. 504–507.

[15] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770–778.

[16] O. Ronneberger, P. Fischer, and T. Brox. “U-net: Convolutional networks for biomedical
image segmentation”. In: International Conference on Medical image computing and computer-
assisted intervention. Springer. 2015, pp. 234–241.

[17] J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for semantic
segmentation”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2015, pp. 3431–3440.

[18] J. Johnson, A. Alahi, and L. Fei-Fei. “Perceptual losses for real-time style transfer and
super-resolution”. In: European conference on computer vision. Springer. 2016, pp. 694–711.

[19] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. “Improved
techniques for training gans”. In: Advances in neural information processing systems. 2016,
pp. 2234–2242.

[20] A. Dosovitskiy and T. Brox. “Generating images with perceptual similarity metrics
based on deep networks”. In: Advances in neural information processing systems. 2016,
pp. 658–666.

[21] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-scale
image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[22] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. “Flownet 2.0:
Evolution of optical flow estimation with deep networks”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2017, pp. 2462–2470.

[23] J. Johnson, A. Alahi, and L. Fei-Fei. “Perceptual losses for real-time style transfer and
super-resolution”. In: European conference on computer vision. Springer. 2016, pp. 694–711.

[24] X. Wang, A. Jabri, and A. A. Efros. “Learning correspondence from the cycle-consistency
of time”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 2566–2576.

[25] D. Dwibedi, Y. Aytar, J. Tompson, P. Sermanet, and A. Zisserman. “Temporal cycle-
consistency learning”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2019, pp. 1801–1810.

[26] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley. “Least squares generative
adversarial networks”. In: Proceedings of the IEEE International Conference on Computer
Vision. 2017, pp. 2794–2802.

[27] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

72

Bibliography

[28] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S.
Roth, and B. Schiele. “The cityscapes dataset for semantic urban scene understanding”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 3213–3223.

[29] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. “Rethinking atrous convolution
for semantic image segmentation”. In: arXiv preprint arXiv:1706.05587 (2017).

[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. “Imagenet large scale visual recognition challenge”. In:
International journal of computer vision 115.3 (2015), pp. 211–252.

[31] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. “CARLA: An Open
Urban Driving Simulator”. In: Proceedings of the 1st Annual Conference on Robot Learning.
2017, pp. 1–16.

[32] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. “Gans trained
by a two time-scale update rule converge to a local nash equilibrium”. In: Advances in
neural information processing systems. 2017, pp. 6626–6637.

[33] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. “Rethinking the inception
architecture for computer vision”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 2818–2826.

[34] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. “The unreasonable effec-
tiveness of deep features as a perceptual metric”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2018, pp. 586–595.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep
convolutional neural networks”. In: Advances in neural information processing systems.
2012, pp. 1097–1105.

[36] B. D. Lucas, T. Kanade, et al. “An iterative image registration technique with an
application to stereo vision”. In: (1981).

[37] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. “Spectral normalization for genera-
tive adversarial networks”. In: arXiv preprint arXiv:1802.05957 (2018).

[38] J. Cheng, L. Dong, and M. Lapata. “Long short-term memory-networks for machine
reading”. In: arXiv preprint arXiv:1601.06733 (2016).

[39] A. P. Parikh, O. Täckström, D. Das, and J. Uszkoreit. “A decomposable attention model
for natural language inference”. In: arXiv preprint arXiv:1606.01933 (2016).

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. “Attention is all you need”. In: Advances in neural information processing
systems. 2017, pp. 5998–6008.

[41] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. “Self-attention generative adver-
sarial networks”. In: arXiv preprint arXiv:1805.08318 (2018).

[42] A. Brock, J. Donahue, and K. Simonyan. “Large scale gan training for high fidelity
natural image synthesis”. In: arXiv preprint arXiv:1809.11096 (2018).

73

Bibliography

[43] T. White. “Sampling generative networks”. In: arXiv preprint arXiv:1609.04468 (2016).

[44] C. Vondrick, H. Pirsiavash, and A. Torralba. “Generating videos with scene dynamics”.
In: Advances in neural information processing systems. 2016, pp. 613–621.

[45] D. Bashkirova, B. Usman, and K. Saenko. “Unsupervised video-to-video translation”.
In: arXiv preprint arXiv:1806.03698 (2018).

[46] L. Zhao, X. Peng, Y. Tian, M. Kapadia, and D. Metaxas. “Learning to forecast and refine
residual motion for image-to-video generation”. In: Proceedings of the European Conference
on Computer Vision (ECCV). 2018, pp. 387–403.

[47] W. Wang, Q. Huang, S. You, C. Yang, and U. Neumann. “Shape inpainting using 3d
generative adversarial network and recurrent convolutional networks”. In: Proceedings
of the IEEE International Conference on Computer Vision. 2017, pp. 2298–2306.

[48] W. Xiong, W. Luo, L. Ma, W. Liu, and J. Luo. “Learning to generate time-lapse videos
using multi-stage dynamic generative adversarial networks”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2018, pp. 2364–2373.

74

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Related Work
	Generative Adversarial Image Generation
	Generative Adversarial Networks
	DCGAN
	Pix2Pix
	Pix2PixHD
	CycleGAN

	Generative Adversarial Video Generation
	Vid2Vid
	RecycleGAN
	TecoGAN

	Temporal Cycle-Consistency Learning
	Temporal Cycle-Consistency in Feature Representation Learning
	Temporal Cycle-Consistency for Video Alignment
	Temporal Cycle-Consistency in GANs

	TimeCycleGAN
	Sequential Generative Adversarial Networks
	Sequential Generators
	Sequence Discriminators
	Sequential Generative Adversarial Training

	TimeCycle Loss
	TimeCycle Motion Model
	Temporal Cycle-Consistency Loss
	Prediction Similarity Loss
	Adversarial Motion Model Loss
	TimeCycle Loss and TimeCycleGAN Objective

	TimeCycleGAN Models
	Overview of Video Generation Tasks
	Unconditional TimeCycleGAN-U
	Unpaired TimeCycleGAN-UP
	Paired TimeCycleGAN-P
	Paired TimeCycleGAN-P++

	Implementation
	Implementation Details
	Network Architectures
	Hyperparameter Choices
	Temporally-Progressive Training
	Sequence-Wise Data Augmentation

	Applying TimeCycle Losses to Arbitrary GANs
	TimeCycle Implementation
	Adding the TimeCycle Loss to an Existing GAN

	Results and Evaluation
	Datasets
	Cityscapes
	Carla

	Quantitative Evaluation Metrics
	Fréchet Inception Distance
	Learned Perceptual Image Patch Similarity
	Temporal Distance on Learned Perception
	Temporal Distance on Optical Flow

	Main Results
	Paired Video-to-Video Translation
	Unpaired Video-to-Video Translation
	Unconditional Video Generation

	Ablation Studies
	TimeCycleGAN Components
	TimeCycle Loss Types
	Sequence Discriminator Conditioning
	Sequence-Wise Data Augmentation

	Discussion
	Summary
	Limitations
	Future Work

	Appendix
	Network Design
	Recurrent Generator Design
	Motion Model Design

	Comparison to Alternative Designs
	TimeCycle Loss and Ping-Pong Loss
	Other Types of Sequential Generators

	TimeCycle Extensions
	TimeCycle Warp Losses
	TimeCycle + Sequence Discriminator
	TimeCycle on Real Images

	List of Figures
	List of Tables
	Glossary
	Acronyms
	Bibliography

	10.EndRight:
	10.StepRight:
	10.PlayPauseRight:
	10.PlayRight:
	10.PauseRight:
	10.PlayPauseLeft:
	10.PlayLeft:
	10.PauseLeft:
	10.StepLeft:
	10.EndLeft:
	anm10:
	10.0:
	9.EndRight:
	9.StepRight:
	9.PlayPauseRight:
	9.PlayRight:
	9.PauseRight:
	9.PlayPauseLeft:
	9.PlayLeft:
	9.PauseLeft:
	9.StepLeft:
	9.EndLeft:
	anm9:
	9.0:
	8.EndRight:
	8.StepRight:
	8.PlayPauseRight:
	8.PlayRight:
	8.PauseRight:
	8.PlayPauseLeft:
	8.PlayLeft:
	8.PauseLeft:
	8.StepLeft:
	8.EndLeft:
	anm8:
	8.0:
	7.EndRight:
	7.StepRight:
	7.PlayPauseRight:
	7.PlayRight:
	7.PauseRight:
	7.PlayPauseLeft:
	7.PlayLeft:
	7.PauseLeft:
	7.StepLeft:
	7.EndLeft:
	anm7:
	7.0:
	6.EndRight:
	6.StepRight:
	6.PlayPauseRight:
	6.PlayRight:
	6.PauseRight:
	6.PlayPauseLeft:
	6.PlayLeft:
	6.PauseLeft:
	6.StepLeft:
	6.EndLeft:
	anm6:
	6.0:
	5.EndRight:
	5.StepRight:
	5.PlayPauseRight:
	5.PlayRight:
	5.PauseRight:
	5.PlayPauseLeft:
	5.PlayLeft:
	5.PauseLeft:
	5.StepLeft:
	5.EndLeft:
	anm5:
	5.0:
	4.EndRight:
	4.StepRight:
	4.PlayPauseRight:
	4.PlayRight:
	4.PauseRight:
	4.PlayPauseLeft:
	4.PlayLeft:
	4.PauseLeft:
	4.StepLeft:
	4.EndLeft:
	anm4:
	4.0:
	3.EndRight:
	3.StepRight:
	3.PlayPauseRight:
	3.PlayRight:
	3.PauseRight:
	3.PlayPauseLeft:
	3.PlayLeft:
	3.PauseLeft:
	3.StepLeft:
	3.EndLeft:
	anm3:
	3.0:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.0:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.0:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.0:

